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Abstract
The weak interactive compression conjecture asserts that any two-party communication protocol
with communication complexity C and information complexity I can be compressed to a protocol
with communication complexity poly(I)polylog(C).

We describe a communication problem that is a candidate for refuting that conjecture. Spe-
cifically, while we show that the problem can be solved by a protocol with communication com-
plexity C and information complexity I = polylog(C), the problem seems to be hard for protocols
with communication complexity poly(I)polylog(C) = polylog(C).
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1 Introduction

The classical data compression theorem shows that every message can be compressed to its
information content, measured using the entropy function. Can one prove a similar result in
the interactive setting, where two parties engage in an interactive communication protocol?
That is, can the transcript of every communication protocol be compressed to (roughly) its
“information content” [2]?

The information content of an interactive protocol is typically measured using the
information complexity measure [11, 16, 7, 1, 2]. In this paper we will mainly be interested
in internal information complexity (a.k.a, information complexity and information cost). A
related notion of external information complexity is also used in the literature. Roughly
speaking, let π be a two-party communication protocol, and let µ be a distribution over
the private inputs for the communicating parties. The (internal) information complexity
of π over µ, denoted ICµ(π), is the number of information bits that the players learn about
each other’s input, when running the protocol π with inputs distributed according to µ (see
Definition 3).
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Using the notion of information complexity, the above interactive compression problem
can be formulated as asking whether for every protocol π and distribution µ with information
complexity I = ICµ(π), there exists a “compressed” protocol π′ that produces (almost) the
same output as π and has CCavgµ (π′) close to I. Here, CCavgµ (π′) stands for the distributional
communication complexity of π′ over µ, which is the expected number of bits communicated
by π′ when the inputs to the players are sampled according to µ (see Definition 2).

Several recent results show how to compress communication protocols in several cases,
starting from [2] (see Section 2.3). However, none of these results gives a way of compressing
a general protocol to a protocol that only communicates I bits, or even poly(I) bits. We
note that in some special cases, compression to poly(I)polylog(C) or even poly(I) are known
to be possible (see Section 2.3).

The difficulty in compressing general protocols was recently explained by the authors,
by proving exponential gaps between the distributional communication complexity and
information complexity of some carefully designed communication tasks. In [8, 10], Ganor,
Kol and Raz showed an explicit example of a boolean function with (internal) information
complexity ≤ I and distributional communication complexity ≥ 2Ω(I) (see [17] for a simplified
proof). In [9], Ganor, Kol and Raz analyzed a communication task proposed by Braverman
[4], with (external) information complexity ≤ I and distributional communication complexity
≥ 2Ω(I).

One drawback of these results is that the protocols that achieve information complexity I
have communication complexity double or even triple exponential in I. Therefore, while
these results rule out “strong” compression to poly(I), they leave open the possibility of
“weak” compression to poly(I)polylog(C).

I Open Problem 1. Is it true that for every computational task f , distribution µ over
the inputs and every communication protocol π that solves f with error o(1), there exists a
protocol π′ that solves f with error o(1), such that

CCavgµ (π′) ≤ poly(ICµ(π)) · polylog(CCavgµ (π))?

A general compression to poly(I)polylog(C) as suggested by Problem 1, if exists, still
yields very efficient compressed protocols that potentially constitute huge savings. Due to the
equivalence between interactive compression and direct sum [2, 5], such a compression would
also imply a near optimal direct sum result for distributional communication complexity, thus
resolve this long standing open problem in the affirmative. Specifically, it will show that the
distributional communication complexity of solving m independent copies of a communication
task is almost as high as m times the distributional communication complexity of solving a
single copy. Moreover, such an interactive compression result gives rise to a new paradigm
for protocol design, where one is only mindful to the information revealed by the protocol,
and then uses a compression scheme as a “black-box” to lower the required communication
complexity.

In this work we suggest a candidate communication problem, called the excited tree
game, for ruling out the poly(I)polylog(C) compression scheme suggested by Problem 1. The
game is defined in Section 3, and is parameterized by a parameter c ∈ N. In Section 5, we
construct a protocol for solving the game with information complexity I = polylog(c) and
communication complexity C = O(c). In Section 4, we try to justify the conjecture that
there is no protocol for solving the game with distributional communication complexity at
most poly(I)polylog(C) = polylog(c). Observe that this conjecture, if true, shows that the
low information protocol we construct for the excited tree game cannot be compressed to
poly(I)polylog(C), thus answers Problem 1 in the negative. Proving this conjecture in full,
however, seems very challenging.
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2 Preliminaries

2.1 Communication Complexity

In the two player distributional model of communication complexity, each player gets an
input, where the inputs are sampled from a joint distribution that is known to both players.
The players’ goal is to solve a computational task that depends on both inputs. The players
can use both common and private random strings and are allowed to err with some small
probability. The players communicate in rounds, where in each round one of the players
sends a message to the other player. The communication complexity of a protocol is the
total number of bits communicated by the two players. The communication complexity of a
computational task is the minimum number of bits that the players need to communicate in
order to solve the task with high probability, where the minimum is taken over all protocols.
For excellent surveys on communication complexity see [14, 15]. In this work it would be
more convenient to work with average communication complexity.

I Definition 2 (Average Communication Complexity). The average communication com-
plexity of a protocol π over random inputs (X,Y ) that are drawn according to a joint
distribution µ, denoted CCavgµ (π), is the expected number of communication bits transmitted
during the protocol, where the expectation is over (X,Y ) and over the randomness. The ε
average communication complexity of a computational task f with respect to a distribution
µ is defined as

CCavgµ (f, ε) = inf
π
CCavgµ (π),

where the infimum ranges over all protocols π that solve f with error at most ε on inputs
that are sampled according to µ.

2.2 Information Complexity

Roughly speaking, the (internal) information complexity of a protocol is the number of
information bits that the players learn about each other’s input, when running the protocol.
The information complexity of a communication task is the minimum number of information
bits that the players learn about each other’s input when solving the task, where the minimum
is taken over all protocols. Formally,

I Definition 3 (Information Cost). The information cost of a protocol π over random inputs
(X,Y ) that are drawn according to a joint distribution µ, is defined as

ICµ(π) = I(Π;X|Y ) + I(Π;Y |X),

where Π is a random variable which is the transcript of the protocol π with respect to µ.
That is, Π is the concatenation of all the messages exchanged during the execution of π. The
ε information cost of a computational task f with respect to a distribution µ is defined as

ICµ(f, ε) = inf
π
ICµ(π),

where the infimum ranges over all protocols π that solve f with error at most ε on inputs
that are sampled according to µ.

ITCS 2018
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2.3 Known Compression Protocols
Several beautiful recent results show how to compress communication protocols in several cases.
Barak, Braverman, Chen and Rao showed how to compress any protocol with information
complexity I and communication complexity C, to a protocol with communication complexity√
I · C ·polylog(C) [2]. They also suggest a protocol that communicates Iext ·polylog(C) bits,

where Iext is the external information complexity of the original protocol. Braverman and
Rao showed how to compress any one round (or constant number of rounds) protocol with
information complexity I to a protocol with communication complexity O(I) [5]. Braverman
showed how to compress any protocol with information complexity I to a protocol with
communication complexity 2O(I) [3] (see also [6, 12]). Building over [2], Kol and Sherstov
showed how to compress any protocol with information complexity I to a protocol with
communication complexity I · polylog(I) in the case where the underlying distribution is a
product distribution [13, 18].

3 The Excited Tree Game

The excited tree game is a communication game for two players A and B. The game is
played on a rooted, complete, binary tree T , of depth c, where c is larger than a sufficiently
large constant. Player A “owns” every non-leaf vertex in even layers and player B “owns"
every non-leaf vertex in odd layers. For every non-leaf vertex v, the owner of v gets as an
input a distribution Pv = (pv, 1− pv) and the other player gets as an input a distribution
Qv = (qv, 1− qv), both distributions are over the children of v. We think of every Pv as the
“correct” distribution over the two children of v. The distributions {Pv, Qv}v are chosen in a
very specific way that is described below.

A frontier in the tree is a set of vertices that contains exactly one vertex (leaf or non-leaf)
on every path from the root to a leaf. Given a vertex v and a frontier S in the tree, we say
that v is above the frontier S if on the path from the root to v there is no vertex in S. We
say that v is on the frontier if v is in S. If v is neither above the frontier nor on it, then it is
below the frontier.

We denote by x, y the inputs to the players A,B respectively. That is, x is the set of all
the distributions Pv or Qv that are given to player A and y is the set of all the distributions
Pv or Qv that are given to player B. We define the distribution µ on the inputs to the
players by an algorithm for sampling an input pair (x, y) (Algorithm 1 below).

Fix some k = polylog(c) such that log4(c) ≤ k. Let µ1 be the uniform distribution over
the interval [− k√

c
, k√

c
] and let µ2 be the uniform distribution over the interval [− 1

8√c ,
1
8√c ].

1

In Algorithm 1 below, we sample for every non-leaf vertex v two values x1(v), x2(v) according
to µ1, µ2 respectively. Next, when we say “set v to be non-excited”, we mean “set pv =
1
2 + x1(v) + x2(v) and qv = 1

2 + x2(v) − x1(v)”. By “set v to be excited”, we mean “set
pv = 1

2 +x1(v) +x2(v) and qv = 1
2 +x1(v)−x2(v)”. Note that without communication, none

of the players can distinguish between an excited vertex and a non-excited vertex, since pv
and qv have the same distribution in both cases.

Given the distributions Pv for every non-leaf vertex v and the frontier S in the tree, we
define a distribution PS over the vertices in S. For every vertex w ∈ S, let v0, v1, ..., v` be

1 One can also consider other symmetric distributions in the range [−1, 1] with expectation 0 and variance
O( k2

c ), O( 1
4√c

) respectively, as well as other values for k, and changing the interval [− 1
8√c
, 1

8√c
] to

[− 1
cβ
, 1

cβ
], for some other 0 < β < 1/2.
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Algorithm 1 Sample (x, y) according to µ

1. For every non-leaf vertex v we sample two values x1(v), x2(v) according to µ1, µ2 respect-
ively.

2. Let S be a frontier in the tree defined as follows: Pick every vertex to be in S, independently,
with probability α = k

c . Then, for every path from the root to a leaf, remove from S all
vertices on that path, except for the vertex closest to the root, if such a vertex exists. If
there is no vertex in S on a path from the root to a leaf, add that leaf to S.

3. Set every non-leaf vertex above the frontier S to be non-excited.
4. Set every non-leaf vertex on the frontier S or below it to be excited.

the vertices on the path in the tree from the root to w, where ` is the layer of w. That is, v0
is the root, v` = w and for every 0 ≤ i < `, vi+1 is a child of vi. Then, PS(w) is obtained
by sampling every child on the path to w according to the correct distribution of its parent.
That is,

PS(w) =
`−1∏
i=0

Pvi(vi+1) where Pvi(vi+1) =
{
pvi if vi+1 is the left hand child of vi
1− pvi if vi+1 is the right hand child of vi

.

The players’ mutual goal is to output the same vertex w on the frontier S, where S is the
frontier defined in Algorithm 1, such that for almost all possible outputs w, the probability
that they both output w is close to PS(w). More precisely, let x, y be the inputs to the players
A,B respectively and let µ be the distribution over the inputs. Let A(x, y), B(x, y) denote
the output values of A,B respectively. Note that A(x, y), B(x, y) are random variables that
depend on the randomness. For a communication protocol π, we say that π solves the game
with respect to µ with error ε if

Pr[A(x, y) = B(x, y)] ≥ 1− ε and E [||A(x, y)− PS ||1] ≤ ε,

where the probability is over inputs that are sampled according to µ and over the randomness,
the expectation is over inputs that are sampled according to µ and || · ||1 is the `1 norm.
Note that A(x, y) is referred to as a distribution as well as a random variable and that the
distribution PS depends on x and y.

In Section 5 we prove the following lemma.

I Lemma 4. There exists a protocol that solves the excited tree game with respect to µ

with error o(1), with average communication complexity O(c) and information complexity
polylog(c).

Therefore, to answer Open Problem 1 in the negative, it is enough to answer the following
question affirmatively.

I Open Problem 5. Is it true that for ε = o(1) the ε average communication complexity of
the excited tree game with respect to µ is at least (log(c))ω(1)?

4 Why Excited Tree?

At a very high level, the excited tree game can be viewed as follows. The game is played on
a rooted, complete, binary tree T , of depth c. A frontier S is chosen in T . All the vertices
above the frontier are set to be “non-excited” and the vertices below the frontier are set to

ITCS 2018
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be “excited”. The player’s goal is to output a vertex on the frontier S, sampled according to
the “correct” distribution.

Let us start with the rational behind the name excited tree game. In physics, an “excited”
state is a state with a higher energy level than the ground (“non-excited”) state. In the
excited tree game, an excited vertex is a vertex with a higher “information level” than a
non-excited vertex. For an excited vertex v the distance between the distributions Pv and Qv
is large and hence the information that the player who doesn’t own v is missing is relatively
large. For a non-excited vertex v the distance between the distributions Pv and Qv is small
and hence the information that the player who doesn’t own v is missing is relatively small.

Since all the vertices above the frontier are non-excited, there is a relatively simple
protocol with low information complexity for the excited tree game: Starting from the
root, until reaching the frontier, at every vertex v, the player owning v samples a child of v
according to Pv and sends a bit bv to the other player, to indicate which child was sampled.
Both players continue to the child of v that is indicated by the communicated bit. Since all
the vertices above the frontier are non-excited, the information given by each bit bv is small
and hence the entire information complexity of the protocol is small. The only complication
in this protocol is that the players have to stop when they reach the frontier. We show how
to do that while keeping the information complexity of the protocol low.

To answer Open Problem 5 affirmatively, one needs to prove a lower bound of (log(c))ω(1)

on the communication complexity of the excited tree game. While we don’t have such a
proof, we note that several approaches to solve the game with communication complexity
(log(c))O(1), seem to fail.

Two properties of the excited tree game that makes it difficult (or impossible...) to solve
with low communication complexity are as follows:
1. Without communication, none of the players can distinguish between an excited vertex

and a non-excited vertex, since pv and qv have the same distribution in both cases. Hence,
without communication (or with relatively small communication) the players don’t have
a lot of information about which vertices are above the frontier and which vertices are
below the frontier.

2. For every vertex v above the frontier, the restriction of the inputs of the two players to
the subtree below v (conditioned on the event that v is above the frontier) has the same
distribution as the distribution of the excited tree game played on a smaller tree. In fact,
we could have defined the problem on an infinite, rooted, complete binary tree, and then
the distribution of the restriction to the subtree below v (conditioned on the event that v
is above the frontier) would have been exactly the same as the original distribution. (We
chose to work with a finite tree for simplicity of the presentation).

In light of these properties, let us consider a few approaches for designing protocols with
low communication complexity for solving the problem, based on known approaches for
compression protocol.

A first approach (inspired by ideas initiated in [2] and used in many subsequent works)
could be to try to simulate the above mentioned low-information protocol, by starting from
the root and trying to sample, according to the correct distribution, vertices that are lower
and lower in the tree, until reaching the frontier. A major difficulty with such attempts is the
second property above. By the second property, even if the two players managed to agree
on a vertex v above the frontier, sampled according to the correct distribution, they still
have to solve a copy of pretty much the same problem as the one that they started with,
and hence they made no (or very little) progress. The two players only make progress if the
vertex v that they agreed on happens to be exactly on the frontier.
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A second approach (inspired by ideas initiated in [2, 5, 3] and used in many subsequent
works) could be to sample a leaf in the tree (or a vertex which is with high probability below
the frontier) and climb up from that vertex to the frontier. A major difficulty with such
attempts is that all the vertices below the frontier are excited, and hence the distributions
that the two players have on the leaves are very far from each other, so it’s hard for them to
agree on a leaf. They could agree on a leaf sampled according to a pre-agreed distribution,
known to both players, such as the uniform distribution, and climb up from that leaf to
the frontier. However, that would not sample a frontier vertex according to the correct
distribution. In general, the first property above (that the players don’t know where the
frontier is) makes such attempts very difficult.

A third approach that one may consider for attacking this and related problems (and
that, to the best of our knowledge, has not been used before), is to try to sample a vertex
v above the frontier (as in the first approach) and from that vertex to move down to the
closest frontier vertex u in the subtree below v. This approach is based on the fact that
there should be a frontier vertex at a distance of roughly log(α−1) = O(log(c)) below v. A
difficulty with such attempts is that it is not clear how to find the closest frontier vertex u
by a protocol with small communication complexity.

We note that turning these intuitions and ideas into a full proof for a lower bound on the
communication complexity of the excited tree game seems very challenging.

5 Information Upper Bound

In this section, we prove Lemma 4. Let (x, y) ∈ supp(µ) be an input pair for the excited
tree game and let S be the frontier defined in Algorithm 1. Let π be the following protocol
for the excited tree game, played on the input pair (x, y): Starting from the root, at every
vertex v, the player owning v samples a child of v according to Pv and sends a bit bv to the
other player, to indicate which child was sampled. Both players continue to the child of v
that is indicated by the communicated bit.

After receiving a bit bv, the receiving party, without loss of generality the second player,
sends a bit av, that supposedly indicates whether the players are above the frontier S or
not, where av = 1 stands for “below or on the frontier” and av = 0 stands for “above the
frontier”. If v is a leaf, the second player sends av = 1. Otherwise, to determine the value of
av, the second player considers the last ` = 4k 4

√
c vertices v1, . . . , v` reached by the protocol

and owned by the first player and the corresponding bits bv1 , . . . , bv` that were sent by the
first player (if less than ` bits were sent by the first player so far, the second player sends
av = 0). For every j ∈ [`], the second player compares bvj and ˜qvj , where ˜qvj is 1 if qvj ≥ 1

2
and 0 otherwise. The second player sends av = 1 if less than `

2 of these pairs are equal, and
otherwise, he sends av = 0.

Once the bit av = 1 was sent, the players run a binary search over the last 3` vertices
reached by the protocol, with the goal of finding the vertex on the frontier (if less than 3`
vertices were reached by the protocol so far, the binary search is over all the vertices reached by
the protocol). In each iteration of the binary search, the players send their input distributions
corresponding to the current vertex considered by the binary search. The probabilities are
truncated so that each player sends k bits per vertex. For each such vertex v, the players
calculate |p′v − q′v|, where p′v, q′v are the truncated pv, qv respectively. The binary search
assumes that |p′u − q′u| ≤ 3k√

c
for all the vertices u among these 3` vertices that are above

the frontier, and that |p′u − q′u| > 3k√
c
for all the vertices u among these 3` vertices that are

below the frontier. Under this assumption, the players output the vertex v which is the first
vertex among these 3` vertices for which |p′v − q′v| > 3k√

c
, if such a vertex exists. (Otherwise,

the players output an error message).

ITCS 2018
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5.1 Bounding the Error Probability
In Claims 6 and 7 we prove that with high probability, the bit av = 1 is sent below or on the
frontier, but not too far below it. In Claim 8 we prove that if this is the case, then with high
probability, the players output the vertex on the frontier reached by the protocol. Note that
each vertex reached by the protocol is chosen according to the correct distribution. That is,
if a vertex w was reached by the protocol, then when the players reached its parent v, they
sampled w according to the distribution Pv. Therefore, Claims 6, 7 and 8 imply that the
distribution of the vertex output by the players is close to the goal distribution PS .

I Claim 6. Let (x, y) ∈ supp(µ) be an input pair for the excited tree game and let S be the
frontier defined in Algorithm 1. Then, with probability at least 1− c · 2−k/2 over the input
pair (x, y) and over the randomness, the bit av = 1 is sent when the players are below or on
the frontier S.

Proof. Let v be a non-excited vertex. First, consider the case that pv ≥ 1
2 . In this case,

Pr
[
qv <

1
2 | pv ≥ 1

2

]
= Pr [x2(v)− x1(v) < 0 | x1(v) + x2(v) ≥ 0]

= Pr [x2(v) < x1(v) | x2(v) ≥ −x1(v)]

= Pr [(x2(v) < x1(v)) ∧ (x2(v) ≥ −x1(v))] · (Pr [x2(v) ≥ −x1(v)])−1

= 2 Pr [−x1(v) ≤ x2(v) < x1(v)]

≤ 2 Pr
[
− k√

c
≤ x2(v) ≤ k√

c

]
= 2k
c3/8 .

Therefore, with high probability, qv ≥ 1
2 and q̃v = 1. It holds that

Pr
[
bv = q̃v |

(
pv ≥ 1

2
)
∧
(
qv ≥ 1

2
)]

= Pr
[
bv = 1 |

(
pv ≥ 1

2
)
∧
(
qv ≥ 1

2
)]

= E
[
pv |

(
pv ≥ 1

2
)
∧
(
qv ≥ 1

2
)]
,

where the last equality holds since the probability is over the inputs and over the randomness.
Bounding the expectation we get that

E
[
pv |

(
pv ≥ 1

2

)
∧
(
qv ≥ 1

2

)]
= E [pv | (x2(v) ≥ −x1(v)) ∧ (x2(v) ≥ x1(v))]

= E [pv | x2(v) ≥ |x1(v)|]

= 1
2 + E [x1(v) | x2(v) ≥ |x1(v)|] + E [x2(v) | x2(v) ≥ |x1(v)|]

≥ 1
2 −

k√
c

+ E [x2(v) | x2(v) ≥ |x1(v)|]

≥ 1
2 −

k√
c

+ E [x2(v) | x2(v) ≥ 0] = 1
2 + 1

2c1/8 −
k√
c
.

Similarly, when pv < 1
2 , the probability that qv ≥ 1

2 is at most 2k
c3/8 . Therefore, with high

probability qv < 1
2 and

Pr
[
bv = q̃v |

(
pv <

1
2
)
∧
(
qv <

1
2
)]

= E
[
1− pv |

(
pv <

1
2
)
∧
(
qv <

1
2
)]

≥ 1
2 −

k√
c
−E [x2(v) | x2(v) < −|x1(v)|]

≥ 1
2 + 1

2c1/8
− k√

c
.

Put together, we get that for a non-excited vertex v, the probability that bv = q̃v is at least(
1− 2k

c3/8

)
·
(

1
2 + 1

2c1/8
− k√

c

)
≥ 1

2 + 1
4c1/8

.
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When the players are above the frontier, all the vertices reached by the protocol are
non-excited. If a player considers ` non-excited vertices v1, . . . , v` and their corresponding
bits bv1 , . . . , bv` , then by Chernoff, the probability that less than `

2 of the pairs bvj , ˜qvj are
equal is at most e−2 /̀16c1/4 ≤ 2−k/2. That is, for every vertex v above the frontier, the
probability that the bit av = 1 is sent is at most 2−k/2. Thus, by the union bound, the total
probability that a bit av = 1 is sent above the frontier is at most c · 2−k/2. J

I Claim 7. Let (x, y) ∈ supp(µ) be an input pair for the excited tree game and let S be the
frontier defined in Algorithm 1. Assume that the players are below or on the frontier. Then,
with probability at least 1− 2−k/2 over the input pair (x, y) and over the randomness, a player
will send the bit av = 1 after at most 2` steps.
Proof. Let v be an excited vertex. First, consider the case that pv ≥ 1

2 . In this case,

Pr
[
qv ≥ 1

2 | pv ≥ 1
2

]
= Pr [x1(v)− x2(v) ≥ 0 | x1(v) + x2(v) ≥ 0]

= Pr [x1(v) ≥ x2(v) | x2(v) ≥ −x1(v)]

= Pr [(x1(v) ≥ x2(v)) ∧ (x2(v) ≥ −x1(v))] · (Pr [x2(v) ≥ −x1(v)])−1

= 2 Pr [−x1(v) ≤ x2(v) ≤ x1(v)]

≤ 2 Pr
[
− k√

c
≤ x2(v) ≤ k√

c

]
= 2k
c3/8 .

Therefore, with high probability, qv < 1
2 and q̃v = 0. It holds that

Pr
[
bv 6= q̃v |

(
pv ≥ 1

2
)
∧
(
qv <

1
2
)]

= Pr
[
bv = 1 |

(
pv ≥ 1

2
)
∧
(
qv <

1
2
)]

= E
[
pv |

(
pv ≥ 1

2
)
∧
(
qv <

1
2
)]
,

where the last equality holds since the probability is over the inputs and over the randomness.
Bounding the expectation we get that

E
[
pv |

(
pv ≥ 1

2
)
∧
(
qv <

1
2
)]

= E [pv | (x2(v) ≥ −x1(v)) ∧ (x2(v) > x1(v))]

≥ 1
2 −

k√
c

+ E [x2(v) | x2(v) ≥ |x1(v)|]

≥ 1
2 −

k√
c

+ E [x2(v) | x2(v) ≥ 0] = 1
2 + 1

2c1/8
− k√

c
.

Similarly, when pv < 1
2 , the probability that qv < 1

2 is at most 2k
c3/8 . Therefore, with high

probability qv ≥ 1
2 and

Pr
[
bv 6= q̃v |

(
pv <

1
2
)
∧
(
qv ≥ 1

2
)]

= E
[
1− pv |

(
pv <

1
2
)
∧
(
qv ≥ 1

2
)]

≥ 1
2 −

k√
c
−E [x2(v) | x2(v) ≤ −|x1(v)|]

≥ 1
2 + 1

2c1/8
− k√

c
.

Put together, we get that for an excited vertex v, the probability that bv 6= q̃v is at least(
1− 2k

c3/8

)
·
(

1
2 + 1

2c1/8
− k√

c

)
≥ 1

2 + 1
4c1/8

.

If the players take 2` steps after they reached an excited vertex, then the player who should
send either av = 0 or av = 1 considers ` excited vertices v1, . . . , v` and their corresponding
bits bv1 , . . . , bv` . By Chernoff, the probability that less than `

2 of the pairs bvj , ˜qvj are not
equal is at most e−2 /̀16c1/4 ≤ 2−k/2. That is, the probability that the player sends av = 0 is
at most 2−k/2. J
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I Claim 8. Let (x, y) ∈ supp(µ) be an input pair for the excited tree game and let S be the
frontier defined in Algorithm 1. Assume that the bit av = 1 is sent when the players are
below or on the frontier S and not more than 2` steps after the players reached a vertex on
S. Let w be the vertex on S that they reached. Then, with probability at least 1− 48k2

c1/8 over
the input pair (x, y) and over the randomness, the players output the vertex w.

Proof. Let v be a non-excited vertex. Recall that p′v, q′v are the truncated probabilities pv, qv
respectively. It holds that |p′v−q′v| ≤ 2|x1(v)|+2−k, which is at most 3k√

c
(with probability 1).

For an excited vertex v, it holds that |p′v − q′v| ≥ 2|x2(v)| − 2−k. The probability that
2|x2(v)| − 2−k is at most 3k√

c
is less than 4k

c3/8 . Taking a union bound over the 3` vertices
considered by the binary search, we get that with probability of at least 1 − 48k2

c1/8 , for all
the excited vertices u among the 3` vertices considered by the binary search, we have that
|p′u − q′u| > 3k√

c
.

Thus, with probability of at least 1− 48k2

c1/8 , we have that |p′u− q′u| ≤ 3k√
c
for all the vertices

u among the 3` vertices considered by the binary search, that are above the frontier, and
|p′u − q′u| > 3k√

c
for all the vertices u among these 3` vertices that are below the frontier.

Under this assumption, the binary search outputs the vertex v which is the first vertex among
these 3` vertices for which |p′v − q′v| > 3k√

c
. Therefore, with probability at least 1− 48k2

c1/8 , the
players output the vertex w. J

5.2 Bounding the Information Cost
To upper bound the information cost of the protocol π we will use the method described in
[8], that is based on the notion of divergence cost of a tree [2, 5].

I Definition 9 (Relative Entropy). Let φ1, φ2 : Ω→ [0, 1] be two distributions, where Ω is
finite. The relative entropy between φ1 and φ2, denoted D(φ1‖φ2), is defined as

D(φ1‖φ2) =
∑
x∈Ω

φ1(x) log
(
φ1(x)
φ2(x)

)
.

I Definition 10 (Divergence Cost [2, 5]). Consider a binary tree T whose root is r and
distributions Pv = (pv, 1 − pv), Qv = (qv, 1 − qv) for every non-leaf vertex v in the tree.
We think of Pv and Qv as distributions over the two children of the vertex v. We define
the divergence cost of the tree T recursively, as follows. D(T ) = 0 if the tree has depth 0,
otherwise,

D(T ) = D(Pr‖Qr) + E
v∼Pr

[D(Tv)], (1)

where for every vertex v, Tv is the subtree of T whose root is v.
An equivalent definition of the divergence cost of T is obtained by following the recursion

in Equation (1) and is given by the following equation:

D(T ) =
∑
v∈V

p̃v ·D(Pv‖Qv), (2)

where V is the vertex set of T and for a vertex v ∈ V , p̃v is the probability to reach v by
following the distributions Pv, starting from the root. Formally, if v is the root of the tree T ,
then p̃v = 1, otherwise,

p̃v =
{
p̃u · pu if v is the left-hand child of u
p̃u · (1− pu) if v is the right-hand child of u.
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We will bound the information cost of the protocol until the bit av = 1 is sent, that is,
until the players decide that they are below or on the frontier. Denote the protocol that
starts as π but ends when the bit av = 1 is sent by π′. Note that after the bit av = 1 is sent
in π, the players exchange at most O(k · log(`)) bits, which adds at most O(k · log(`)) bits of
information.

We denote by Tπ′ the binary tree associated with π′. That is, every vertex v of Tπ′

corresponds to a possible transcript of π′ and the two edges going out of v are labeled by 0
and 1, corresponding to the next bit to be transmitted. The vertices of the tree Tπ′ have the
following structure: Every vertex v of Tπ′ corresponds to a vertex ṽ of T , the binary tree on
which the excited tree game is played. For a vertex v in an odd layer of Tπ′ , the next bit to
be transmitted by π′ on the vertex v is bṽ. For a vertex v in an even layer of Tπ′ , the next
bit to be transmitted by π′ on the vertex v is aṽ.

Every input pair (x, y) ∈ supp(µ) for the excited tree game, induces a distribution
Pv = (pv, 1− pv) for every vertex v of the tree Tπ′ , where pv is the probability that the next
bit transmitted by the protocol π′ on the vertex v and inputs x, y is 0. Namely, if v is in an
odd layer of Tπ′ , the distribution Pv is the input distribution Pṽ of the player that owns ṽ.
If v is in an even layer of Tπ′ then Pv = (1, 0) when the player sending aṽ decides that the
players are above the frontier and Pv = (0, 1) when aṽ = 1 is sent (note that given x, y and v
this decision is deterministic).

For every vertex v of Tπ′ , we define an additional distribution Qv = (qv, 1−qv) (depending
on the input pair (x, y)). For a vertex v in an odd layer of Tπ′ , the distribution Qv is the
input distribution Qṽ of the player that doesn’t own ṽ. If v is in an even layer of Tπ′ then
Qv = (1− 1

c ,
1
c ).

For the rest of the section, we think of Tπ′ as the tree Tπ′ together with the distributions Pv
and Qv, for every vertex v in the tree Tπ′ . In [8], Ganor, Kol and Raz showed that
ICµ(π′) ≤ E[D(Tπ′)], where D(Tπ′) is the divergence cost of the tree and the expectation is
over the sampling of the inputs according to µ and over the randomness. Together with the
following claim, we get that ICµ(π′) ≤ O(k2).

I Claim 11. Let π′ be the protocol that starts as π but ends when the bit av = 1 is sent. Let
Tπ′ be the binary tree associated with π′, together with the distributions Pv and Qv for every
vertex v in the tree Tπ′ , as defined above. Then,

E[D(Tπ′)] = O(k2),

where the expectation is over the inputs and over the randomness.

Proof. We bound the divergence cost separately for vertices in odd layers and for vertices in
even layers. First, we sum over vertices in even layers. For every vertex v in an even layer
of Tπ′ , if Pv = (1, 0) then D(Pv‖Qv) = log

(
1

1− 1
c

)
= log

(
1 + 1

c−1

)
< 2

c . Since there are at
most c such vertices on every path and the probability of reaching each vertex is at most
1, the sum in Equation (2) taken over vertices in even layers with Pv = (1, 0) is at most
c · 2

c = 2. If Pv = (0, 1) then D(Pv‖Qv) = log
(

1
1
c

)
= log (c) ≤ O(k). Along each path, there

is only one vertex v for which Pv = (0, 1), the last vertex reached by the protocol π′.
Next, we sum over vertices in odd layers along an average path. Recall that each such

vertex v corresponds to a vertex ṽ in T . Let v be a vertex in an odd layer of Tπ′ . It holds

ITCS 2018
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that |pv − qv| ≤ 1
4 and pv ≥ 5

16 , and therefore,
∣∣∣pv−qvpv

∣∣∣ ≤ 4
5 . By Taylor’s expansion,

−pv ln qv
pv

= −pv ln
(

1− pv − qv
pv

)
≤ (pv − qv) +

∞∑
i=2

|pv − qv|i

i · pi−1
v

≤ (pv − qv) +
∞∑
i=2

|pv − qv|i

2pi−1
v

= (pv − qv) + (pv − qv)2

2 (pv − |pv − qv|)
≤ (pv − qv) +O

(
(pv − qv)2) .

Similarly, −(1− pv) ln 1−qv
1−pv ≤ (qv − pv) +O

(
(pv − qv)2). We get that

D(Pv||Qv) = −pv log qv
pv
− (1− pv) log 1− qv

1− pv
≤ O

(
(pv − qv)2) .

For each non-excited vertex v it holds that |pv − qv| ≤ 2k√
c
and therefore, the non-excited

vertices add at most O(k2) to the divergence cost along any path. For each excited vertex v
it holds that |pv − qv| ≤ 2

8√c . By Claim 7, the probability that there are more than 3` excited
vertices on a path is at most 2−k/2 ≤ 1/c. Therefore, along an average path, the expected
number of excited vertices is at most O(`) = O(k 4

√
c) and they add at most

O

(
` ·
(

2
8
√
c

)2
)

= O(k)

to the expected divergence cost. Put together, the expected divergence cost of π′ is O(k2). J
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