5,608 research outputs found

    Synthetic aperture radar with compressed sensing

    Get PDF
    A general synthetic aperture radar (SAR) signal model is derived from the Maxwell’s equations, and compressed sensing are introduced to the signal model for SAR image reconstruction. Random Partial Fourier Matrices were applied to prove that compressed sensing can be used to this signal model from the viewpoint of mathematics. In the numerical simulation part, we show that the procedure of basis pursuit can reconstruct SAR image, based on our main results, which is shown efficient in comparison with the matched filter algorithm

    Compressed sensing of monostatic and multistatic SAR

    Get PDF
    In this letter, we study the impact of compressed data collections from a synthetic aperture radar (SAR) sensor on the reconstruction quality of a scene of interest. Different monostatic and multistatic SAR measurement configurations produce different Fourier sampling patterns. These patterns reflect different spectral and spatial diversity tradeoffs that must be made during task planning. Compressed sensing theory argues that the mutual coherence of the measurement probes is related to the reconstruction performance of sparse domains. With this motivation, we propose a closely related t%-average mutual coherence parameter as a sensing configuration quality parameter and examine its relationship to the reconstruction behavior of various monostatic and ultranarrow-band multistatic configurations. We investigate how this easily computed metric is related to SAR reconstruction quality

    Charge-coupled device data processor for an airborne imaging radar system

    Get PDF
    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems

    A sparsity-driven approach for joint SAR imaging and phase error correction

    Get PDF
    Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. Phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm each iteration of which consists of consecutive steps of image formation and model error correction. Experimental results show the effectiveness of the approach for various types of phase errors, as well as the improvements it provides over existing techniques for model error compensation in SAR

    Compressed sensing of monostatic and multistatic SAR

    Get PDF
    In this paper we study the impact of sparse aperture data collection of a SAR sensor on reconstruction quality of a scene of interest. Different mono and multi-static SAR measurement configurations produce different Fourier sampling patterns. These patterns reflect different spectral and spatial diversity trade-offs that must be made during task planning. Compressed sensing theory argues that the mutual coherence of the measurement probes is related to the reconstruction performance of sparse domains. With this motivation we compare the mutual coherence and corresponding reconstruction behavior of various mono-static and ultra-narrow band multi-static configurations, which trade-off frequency for geometric diversity. We investigate if such simple metrics are related to SAR reconstruction quality in an obvious way
    • …
    corecore