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ABSTRACT

Cao, Yufeng., Synthetic Aperture Radar with Compressed Sensing. Master of Science (MS), Au-

gust, 2013, 33 pp., 11 figures, references, 24 titles.

A general synthetic aperture radar (SAR) signal model is derived from the Maxwell’s equations,

and compressed sensing are introduced to the signal model for SAR image reconstruction. Random

Partial Fourier Matrices were applied to prove that compressed sensing can be used to this signal

model from the viewpoint of mathematics. In the numerical simulation part, we show that the

procedure of basis pursuit can reconstruct SAR image, based on our main results, which is shown

efficient in comparison with the matched filter algorithm.
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CHAPTER I

SYNTHETIC APERTURE RADAR

I.1 Synthetic Aperture Radar (SAR)

Synthetic aperture radar (SAR) is a remote sensing technique that uses an antenna, which is mount-

ed on a moving platform, to image a stationary target scene. In most cases, SAR antennas are either

mounted on airborne or spaceborne platforms, such as airplanes or satellites. These antennas use

highly directed microwave radiation to produce images of specific patch of the Earth’s surface.

Unlike most remote imaging systems such as visible and infrared systems, SAR uses active imag-

ing [9]. This means that the portion of the ground that is to be imaged must first be illuminated

by a beam of microwave energy emitted by a transmitting antenna, rather than relying on passive

sources of illumination such as solar radiation. SAR systems are also preferred over other types

due to their ability to produce high quality images through cloud cover and at night [8].

Figure I.1: Illustration of synthetic aperture radar

In the early 1950’s, Carl Wiley discovered a novel method to increase the cross-range resolution

of radar imaging systems, which he referred as a Doppler beam sharpening. What he discovered
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was that a comparison of the returns from a series of radar pulses from an antenna mounted on a

platform moving along a given flight path parallel to the ground could be used to produce a higher

resolution image [5]. In this way, a synthetic aperture with length equal to that of the platform

flight path is created. The method that he discovered was essentially the same as what is now

called stripmap-mode SAR.

There are a number of different types of SAR imaging systems that are currently in use. Two

of the most common SAR modes, which are used by modern systems, are stripmap-mode and

spotlight-mode. However, it should be noted that these modes are not exclusive. That is, there are

some SAR systems that can switch between imaging modes [8].

As was previously mentioned, the original SAR mode that was invented by Wiley was stripmap-

mode SAR. In the case of this SAR mode, the radar antenna is mounted at a fixed angle on a mov-

ing platform. stripmap-mode SAR systems are capable of producing high resolution images over

a large region of the ground. This makes it useful for terrain mapping.

Figure I.2: Illustration of stripmap-mode SAR

In the case of Spotlight-mode SAR, the radar beam is steered so that it remains focused on

a single area of the target space. Spotlight-mode SAR systems can use either electronic or me-

chanical beam steering. The main advantage of this mode is that it has increased image resolution
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when compared to stripmap-mode SAR. However, this increase in resolution comes at the cost of

decreased area coverage.

Figure I.3: Illustration of spotlight-mode SAR

The best models retain as much physics as possible, though algorithms based on such models

are often computationally intensive and difficult to apply to real-time radar environments or those

involving large amounts of data. One such physics-based model utilized the geometrical theory of

diffraction. This model gives an estimate of the geometry, location, and response to polarization

for each scatterer. Another physics-based model is based on Maxwell’s equations for electromag-

netism [6]. But it does not use all of Maxwell’s equations. An ideal model would use the full set

of Maxwell’s equations, but such a model only is required systems that have antennas that take

polarimetric measurements.

Most models make a linearizing assumption known as the Born approximation, which is equiv-

alent to assuming that the wave scatters only once before returning to the antenna. For example,

when imaging underneath dense vegetation, most scattering is multiple scattering and the inability

to account for this degrades the quality of the image formed. In addition, this approximation may

introduce unwanted effects to the image such as shadowing and it ignores polarization changes as

the waves scatter.

In this thesis we will study synthetic aperture radar imaging under the wave equation model

introduced by Cheney [6].
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CHAPTER II

MATHEMATICAL MODEL FOR SYNTHETIC APERTURE RADAR

II.1 Wave Propagation

The signals transmitted and measured by radar antenna are electromagnetic, therefore the appro-

priate model for radar is Maxwell’s equation [6]. For radar imaging, what is important is the wave

nature of the transmitted and measured signals. Therefore, an appropriate model is given by

(∇2 − 1

c2(x)
∂2t )u(t, x) = −j(t, x), (II.1)

where u(t, x) represents one component of the electromagnetic field due to some source j(t, x)

and c(t, x) is local propagation speed of electromagnetic waves. Scattering causes singularities in

the wave speed. In the absence of scatterers the speed of propagation is c(t, x) = c0.

Scattering can be thought of as being due to perturbations in the wave speed, which we write

as
1

c2(x)
=

1

c20
− V (x). (II.2)

Here V (x) is the reflectivity function. Eq. (II.1) and Eq. (II.2) do not provide an entirely accu-

rate model for electromagnetic scattering from an object. Nevertheless, this is a commonly used

model for radar scattering, with the understanding that V (x) does not exactly correspond to the

perturbation in the electromagnetic wave speed in the material.

In this model, the electric field can be divided into two component fields

u = uin + usc. (II.3)

In the above equation, uin(t, x) is the incident field that is emitted by the antennas, and usc is

the scattered field, which results from the interaction of the incident field with a target. Since the
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source of the incident field is a current on the antenna, uin is modeled using the non- homogeneous

wave equation

(∇2 − 1

c20(x)
∂2t )u

in(t, x) = −j(t, x). (II.4)

A wave equation that describes the propagation of the scattered field is derived from Eq (II.1) and

Eq (II.4), and it reads

(∇2 − 1

c20(x)
∂2t )u

sc(t, x) = −V (x)∂2t u(t, x). (II.5)

Here V (x) is the reflectivity function, which is given by

V (x) =
1

c20
− 1

c2(x)
. (II.6)

When the incident field comes into contact with a target, it induces a current, which causes the

target to re-emit a weaker time shifted version of the same signal. However, V (x) does not directly

measure the intensity of the reflected signal. Instead, it indicates the level perturbation that occurs

in the wave speed when the incident field comes in contact with the target plane. It will be assumed

that the reflectivity function has compact support on the set of points on the target plane that have

been illuminated by the antenna.

A fundamental solution of the wave equation is a generalized function satisfying

(∇2 − 1

c20(x)
∂2t )g(t, x) = −δ(t)δ(x). (II.7)

The solution of Eq. (II.7) is

g(t, x) =
δ(t− |x|/c0)

4π|x|
. (II.8)

The Green’s function enables us to solve the constant-speed wave equation with any source term.

The solution for the incident field is

uin(t, x) =

∫
R3

dy

∫
R

δ(t− τ − |x− y|/c0)
4π|x− y|

j(τ, y)dτ. (II.9)
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Since the antenna current density will be modeled such that j(t, x) = p(t)δ(x − x0). Subsisting

this into Eq. (II.9) yields the following expression

uin =
p(t− |x− x0|/c0)

4π|x− x0|
. (II.10)

Furthermore, it is common to represent the current wave model in the frequency domain. Such a

representation can be found by considering the following Helmholtz wave equation

(∇2 + k2)U in(x, f) = −J(x, f). (II.11)

In the above equation, U in and J are the Fourier Transform of uin and j, respectively, the equation

can be solved by using the Helmholtz Green’s function

G(x) =
e−ik|x|

4π|x|
, (II.12)

where k = 2πf/c0 denotes the wavenumber. Then, the solution for the frequency domain repre-

sentation of the incident field is given in terms of the following equation

U in(f, x) =

∫
R3

e−ik|x−y|

4π|x− y|
J(x, f)dy, (II.13)

since j(t, x) = p(t)δ(x− x0), we obtain,

U in(f, x) = p(f)
e−ik|x−x0|

4π|x− x0|
. (II.14)

II.2 The Lippmann- Schwinger Integral Equation

Since the scattered field is created as a result of the interaction of the incident field with the target

scene, it would be useful if a formulation for the scattered field could be found directly in terms

of the incident field. However, in general, this is not always possible. Consider that the scattered
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field can be described by the following equation

(∇2 + k2)U sc(x, f) = −V (x)U(x, f). (II.15)

The solution to this equation can be found, in the same way as before, in the frequency domain to

be

U sc(f, x) = −
∫
R3

e−ik|x−z|

4π|x− z|
V (z)f 2U(x, f)dz, (II.16)

and in the time domain to be

usc(t, x) =

∫
R3

dz

∫
R

δ(t− τ − |x− z|/c0)
4π|x− z|

, V (z)∂2t u(τ, z)dτ. (II.17)

It is clear that in both of the above expressions that the scattered field is dependent on the total

field. Since in Eq. (II.16) and Eq. (II.17) the scattered field appears on both sides of the equation,

it is not possible to exactly formulate the scattered field in terms of the incident field alone. In the

following sections, a solution to this problem will be detailed

II.3 The Born Approximation

For radar imaging, we measure usc at the antenna, and we would like to determine V . However,

both V and usc in the neighborhood of the target V are unknown, and in Eq. (II.17) these unknowns

are multiplied together. This nonlinearity makes it difficult to solve for V . Consequently, almost

all work on radar imaging involves making the Born approximation, which is also known as the

weak-scattering or single-scattering approximation. This corresponds to replacing u(t, x) on the

right side of Eq. (II.17) by uin. giving the following equation

usc(t, x) =

∫
R3

dz

∫
R

δ(t− τ − |x− z|/c0)
4π|x− z|

V (x)∂2t u
in(τ, z)dτ. (II.18)

In the frequency domain, the Born approximation is

U sc(f, z) = −
∫
R3

e−ik|x−z|

4π|x− z|
V (z)f 2U in(z, f)dz. (II.19)
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Since we know that

U in(f, z) = p(f)
e−ik|z−x0|

4π|z − x0|
, (II.20)

it immediately follows that

U sc(f, x) = −
∫
R3

e−ik|x−z|

4π|x− z|
V (z)f 2p(f)

e−ik|z−x0|

4π|z − x0|
dz. (II.21)

The Born approximation is very useful, because it makes the imaging problem linear.

II.4 Far-Field Wave Propagation Model

Often the flight path of the radar platform is designed in such a way that the maximum target

distance from the origin, which is located at the target scene center, is much smaller than the

distance of the antenna from the same origin. In this case, any computation of the received signal

based on Eq. (II.21) can be simplified through the application of what is commonly referred to

as the far-field approximation. This approximation can be understood by first noting that radar

waves propagate as a spherical wave front. When the antenna is far from the target center, the

curvature of this wavefront can be assumed to be negligible. Under this assumption, in the extreme

far-field, radar wave propagation can be approximately represented by a plane wave. Actually, a

good mathematical model is a rectangular distribution of point sources. We denote the length and

width of the antenna by L and D, respectively, we denote the center of the antenna by x′, thus a

point on the antenna can be written x0 = x′ + q, where q is a vector from the center of the antenna

to a point on the antenna. This assumption can be justified mathematically by applying a first order

Taylor expansion to the range term |z − x0|:

|z − x0| = |z − x′ − q| = |z − x′| − ̂(z − x′) · q +O(
L2

|z − x′|
). (II.22)

Then, the phase term becomes

e−ik|z−x0|
4π|z − x0|

=
e−ik|z−x

′ |
4π|z − x′|

· eik(ẑ−x′)·q[1 +O(
|L|2

|z − x′|
)] · [1 +O(

k|q|2

|z − x′|
)]. (II.23)
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Figure II.1: Illustration of rectangular distribution of point sources

Then, we apply this approximation for the incident field, and we obtain

U in(f, z) = p(f)
e−ik|z−x

′|

4π|z − x′|
· e ̂(z−x′)·q. (II.24)

II.5 Measured Data

We use a similar procedure to model how the receiving antenna measures the scattered field. In

Eq. (II.19), we substitute Eq. (II.24) for the incident field to find the measured data.

U sc(f, z) = −
∫
R3

e−ik|x−z|

4π|x− z|
V (z)f 2p(f)

e−ik|z−x
′|

4π|z − x′|
· e ̂(z−x′)·qdz. (II.25)

If we assume that the receiving antenna is at the same location as the transmitting antenna, we find

that the scalar Born model for the received signal is

s(f, x′) =

∫
e−2ik|z−x

′| · A(f, x′, z) · V (z)dz, (II.26)
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where

A(f, x′, z) =
f 2

(4π|z − x′|)2
· F (k, ẑ), (II.27)

and

F (k, ẑ) = p(f)eik
̂(z−x′)·q. (II.28)

Synthetic-aperture imaging involves a moving platform, and usually the antenna is pointed toward

the earth. We denote by γ the antenna path. For a pulsed system, we assume that pulses are

transmitted at times tn and that the antenna position at time tn is γn. Because the time scale on

which the antenna moves is much slower than the time scale on which the electromagnetic waves

propagate, we separate the time scales into a slow times, which corresponds to the n of tn, and a

fast time t. Using a continuum model for the slow time makes some of the analysis simpler but

also leaves out some important effects that we will consider below. Using the continuum model

for slow time, in Eq. (II.26) we replace the antenna position x′ by γ(s)

s(f, s) =

∫
e−2ik|γ(s)−z|A(f, s, z)V (z)dz. (II.29)

With the additional assumption that the antennas are broadband and an appropriate symbol

estimate of A. With this assumption, we can construct an approximate inverse operator, which

we denote B. The reconstructed image I is formed by applying the inverse operator B to the data

where B is of the form:

I(y) = B[s](y) :=

∫
e−2ik|γ(s)−zT |Q(f, s, z)s(f, s)dfds, (II.30)

where zT = (z, 0) and where Q is a filer to be determined below. The time-domain version is

I(y) = B[s](y) :=

∫
eif(t−

2|γ(s)−zT |
c

)Q(f, s, z)s(t, s)dfdsdt. (II.31)

10



CHAPTER III

COMPRESSIVE SENSING

III.1 Introduction

The traditional approach of reconstructing signals or images from measured data follows the

well-known Shannon sampling theorem [10], which states that the sampling rate must be at least

twice the highest frequency. Similarly, the fundamental theorem of linear algebra suggests that

the number of collected samples of a discrete finite-dimensional signal should be at least as large

as its length in order to ensure reconstruction. This principle underlies most devices of current

technology, such as analog-to-digital conversion, medical imaging, or audio and video electronics.

The novel theory of compressive sensing(CS)-also known under the terminology of compressed

sensing, compressive sampling, or sparse recovery-provides a fundamentally new approach to data

acquisition, which overcomes this common wisdom. It predicts that certain signals or images can

be recovered from what was previously believed to be highly incomplete measurements.

CS relies on the empirical observation that many types of signals or images can be well ap-

proximated by a sparse expansion in terms of a suitable basis, that is, by only a small number of

nonzero coefficients. This is the key to the efficiency of many lossy compression techniques such

as JPEG, MP3, etc. A compression is obtained by simply storing coefficients are simply set to

zero. This is certainly a reasonable strategy when full information of the signal is available. How-

ever, when the signal first has to be acquired by a somewhat costly, lengthy, or otherwise difficult

measurement procedure, this seems to be a waste of resources. First, large efforts are spent in order

to obtain full information on the signal, and afterward most of the information is thrown away at

the compression stage. One might ask whether there is a clever way of obtaining the compressed

version of the signal more directly, by taking only a small number of measurements of the signal.

It is not obvious whether this is possible since measuring directly the large coefficients requires to
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know a priori their location. Quite surprisingly, compressive sensing provides nevertheless a way

of reconstructing a compressed version of the original signal by taking only a small amount of lin-

ear and nonadaptive measurements. The precise number of required measurements is comparable

to the compressed size of the signal. Clearly, the measurements have to be suitably designed. It is a

remarkable fact that all provably good measurement matrices designed so far are random matrices.

It is for this reason that the theory of compressive sensing uses a lot of results from probability

theory.

The first naive approach to a reconstruction algorithm consists in searching for the sparsest

vector that is consistent with the linear measurements. This leads to the combinatorial l0-problem,

which unfortunately is NP-hard in general. There are essentially two approaches for tractable alter-

native algorithms. The first is convex relaxation leading to l1-minimization. By now, basic prop-

erties of the measurement matrix, which ensure sparse recovery by l1-minimization are known:

the null space property (NSP) and the restricted isometry property (RIP). The latter requires that

all column sub matrices of a certain size of the measurement matrix are well conditioned. This

is where probabilistic methods come into play because it is quite hard to analyze these properties

of deterministic matrices with minimal amount of measurements. Among the provably good mea-

surement matrices are Gaussian, Bernoulli random matrices, and partial random Fourier matrices.

Many lossy compression techniques such as JPEG, JPEG-2000, MPEG, or MP3 rely on the

empirical observation that audio signals and digital images have a sparse representation in terms of

a suitable basis. Roughly speaking, one compresses the signal by simply keeping only the largest

coefficients. In certain scenarios such as audio signal processing one considers the generalized

situation which appears in terms of a redundant system- a so-called dictionary or frame- rather

than a basis. The problem of finding the sparsest representation in terms of the given dictionary

turns out to be significantly harder than in the case of sparsity with respect to a basis where the

expansion coefficients are unique.

12



III.2 Mathematical Modeling and Analysis

This section introduces the concept of sparsity and the recovery of sparse vectors from incomplete

linear and nonadaptive measurements. In particular, an analysis of l1-minimization as a recovery

method is provided. The null-space property and the restricted isometry are introduced and it is

shown that they ensure robust sparse recovery. It is actually difficult to show these properties for

deterministic matrices and the optimal number m of measurements, and the major breakthrough in

compressive sensing results is obtained for random matrices. Example of several types of random

matrices that ensure sparse recovery are given, such as Gaussian, Bernoulli, and partial random

Fourier matrices.

• Preliminaries and Notation

This exposition mostly treats complex vectors in CN although sometimes the considerations will

be restricted to the real-case RN . The lp-norm of a vector x ∈ CN is defined as

‖x‖p :=

(
N∑
j=1

|xj|p
)1/p

, 0 < p < +∞, (III.1)

‖x‖∞ := max
{j∈1,··· ,N}

|xj|. (III.2)

For 1 < p ≤ ∞, it is indeed a norm while for 0 < p < 1 it is only a quasi-norm. When emphasizing

the norm the term lNp is used instead of CN or RN . The unit ball in lNp is BN
p = {x ∈ CN , ‖x‖p ≤

1}. The operator norm of a matrix A ∈ Cm×N from lNp to lmp is denoted

‖A‖p→p = max
‖x‖p=1

‖Ax‖p. (III.3)

In the important special case p = 2, the operator norm is the maximal singular value σmax(A) of A.

For a subset T ⊂ {1, · · · , N}. we denote by xT ∈ CN the vector, which coincides with

x ∈ CN on the entries in T and is zero outside T. Similarly, AT denotes the column sub matrix of A

corresponding to the columns indexed by T. Further, T c = {1, · · · , N}\T denotes the complement
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of T and |T | indicates the cardinality of T. The kernel of a matrix A is denoted by kerA = {x ∈

CN , Ax = 0}.

• Sparsity and Compression

Compressive sensing is based on the empirical observation that many types of real-world signals

and images have a sparse expansion in terms of a suitable basis or frame, for instance a wavelet

expansion. This means that the expansion has only a small number of significant terms, or in other

words, that the coefficient vector can be well approximated with one having only a small number

of non vanishing entries.

This support of a vector x is denoted supp(x) = {j ∈ {1, · · · , N}|xj 6= 0}, and

‖x‖0 := |supp(x)|. (III.4)

It has become common to call ‖ · ‖0 the l0-norm, although it is not even a quasi-norm. A vector x

is called k-sparse if ‖x‖0 ≤ k. For k ∈ {1, 2, · · · , N},

∑
k

:= {x ∈ CN : ‖x‖0 ≤ k}, (III.5)

denotes the set of k-sparse vectors. Furthermore, the best k-term approximation error of a vector

x ∈ CN in lp is defined as

σk(x)p = infz∈
∑
k
‖x− z‖p. (III.6)

If σk(x) decays quickly in k then x is called compressible. Indeed, in order to compress x one way

may simply store only the k largest entries. When reconstructing x from its compressed version

the non-stored entries simply set to zero, and the reconstruction error is σk(x)p. It is emphasized

at this point that the procedure of obtaining the compressed version of x is adaptive and nonlinear

since it requires the search of the largest entries of x in absolute value. In particular, the location

of the non zeros is a nonlinear type of information.
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The best k-term approximation of x can be obtained using the non-increasing rearrangement

r(x) = (|xi1|, · · · , |xiN |)T , where ij denotes a permutation of indices such that |xi1| ≥ |xij+1
| for

j = {1, · · · , N − 1}. Then it is straightforward to check that

σk(x)p =

(
N∑

j=k+1

rj(x)p

)1/p

, 0 < p <∞, (III.7)

and the vector x[k] derived from x by setting to zero all the N −k smallest entries in absolute value

is the best k-term approximation

x[k] = argminz∈∑k
‖x− z‖p, (III.8)

for any 0 < p ≤ ∞.

The next lemma states essentially that lp-balls with small q are good models for compressible

vectors.

Lemma 1 Let 0 < q < p ≤ ∞ and set r = 1/q − 1/p, then

σk(x)p ≤ k−r, k = 1, 2, · · · , N. (III.9)

• Compressive Sensing

The above outlined adaptive strategy of compressing a signal x by only keeping its largest coef-

ficients is certainly valid when full information on x is available. If, however, the signal first has

to be acquired or measured by a somewhat costly or lengthy procedure then this seems to be a

waste of resources: At first, large efforts are made to acquire the full signal and then most of the

information in thrown away when compressing it.

Taking m linear measurements of a signal x ∈ CN corresponds to applying a matrix A ∈

Cm×N - the measurement matrix

y = Ax. (III.10)
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The vector y ∈ CM is called the measurement vector. The main interest is in the vastly under

sampled case m� N . Without further information, it is , of course, impossible to recover x from

y since the linear system is highly under determined, and has therefore infinitely many solution.

However, if the additional assumption that the vector x is k-sparse is imposed, then the situation

dramatically changes as will be outlined.

The approach for a recovery procedure that probably comes first to mind is to search for the sparsest

vector x, which is consistent with the measurement vector y = Ax. This leads to solving the l0-

minimization problem

min ‖z‖0, subject to Az = y. (III.11)

Unfortunately, this combinatorial minimization problem is NP-hard in general [16]. In other words,

an algorithm that solves for any matrix A and any right-hard side y is necessarily computationally

intractable. Therefore, essentially two practical and tractable alternative to have been proposed in

the literature: convex relaxation leading to l1-minimization also called basis pursuit– and greedy

algorithms, such as various matching pursuits [15]. Quite surprisingly for both types of approaches

various recovery results are available, which provide conditions on the matrixA and on the sparsity

‖x‖0 such that the recovery solution coincides with the original x, and consequently also with the

solution. This is no contradiction to the NP-hardness, since these results apply only to a subclass

of matrices A and right-hand sides y.

The l1-minimization approach considers the solution of

min ‖z‖1, subject to Az = y, (III.12)

which is a convex optimization problem and can be seen as a convex relaxation. Various efficient

convex optimization techniques apply for its solution [14]. In the real-valued case, it is equivalent

to a linear program and in the complex-valued case, it is equivalent to a second-order cone program.

Therefore, standard software applies for its solution.

16



Figure III.1: The minimizer within the affine space of solutions of the linear system Az = y coin-
cides with a sparsest solution

• The null space property

The null space property is fundamental in the analysis of l1-minimization.

Definition 1 A matrix A ∈ Cm×N is said to satisfy the null space property (NSP) of order k with

constant γ ∈ (0, 1) if and only if

‖η‖1 ≤ γ‖ηT c‖1, (III.13)

for all sets T ⊂ {1, · · · , N}, and for all η ∈ kerA The following sparse recovery result is based

on this notion.

Theorem 1 Let A ∈ Cm×N be a matrix that satisfies the NSP of order k with constant γ ∈

(0, 1). Let x ∈ CN and y = Ax and let x∗ be a solution of the l1-minimization problem, then

‖x− x∗‖1 ≤
2(1 + γ)

1− γ
σk(x)1. (III.14)

In particular, if x is k-sparse then x = x∗.
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Proof, Let η = x− x∗, then η ∈ kerA and ‖x∗‖1 ≤ ‖x‖1,

because x∗ is a solution of the l1-minimization problem. Let T be the set of the k-largest entries

of x in absolute value. One has

‖x∗T‖1 + ‖x∗T c‖1 ≤ ‖xT‖1 + ‖xT c‖1. (III.15)

It follows immediately from the triangle inequality that

‖xT‖1 − ‖ηT‖1 + ‖ηT c‖1 − ‖xT c‖1 ≤ ‖xT‖1 + ‖xT c‖1, (III.16)

hence

‖ηT c‖1 ≤ ‖ηT‖1 + 2‖xT c‖1 ≤ γ‖ηT c‖1 + 2σk(x)1, (III.17)

or, equivalently.

‖ηT c‖1 ≤
2

1− γ
σk(x)1, (III.18)

finally

‖x− x∗‖1 = ‖ηT‖1 + ‖ηT c‖1 ≤ (γ + 1)‖ηT c‖1 ≤
2(1 + γ)

1− γ
σk(x)1, (III.19)

and the proof is completed.

One can also show that if all k-sparse x can be recovered from y = Ax using l1-minimization

then necessarily A satisfies the NSP of order k with some constant γ ∈ (0, 1). Therefore, the NSP

is actually equivalent to sparse l1 recovery.

• The restricted isometry property

The NSP is somewhat difficult to show directly. The restricted isometry property (RIP) is easier to

handle and it also implies stability under noise as stated below.

Definition 2 The restricted isometry constant δk of a matrix A ∈ Cm×N is the smallest number

such that

(1− δk)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δk)‖z‖22. (III.20)
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A matrix A is said to satisfy the restricted isometry property of order k with constant δk if δk ∈

(0, 1). It is easily seen that δk can be equivalently defined as

δk = max
T⊂{1,··· ,N}

‖A∗TAT − Id‖2, I is identity, (III.21)

which means that all column submatrices of A with at most k columns are required to be well

conditioned. The RIP implies the NSP, as shown in the following lemma.

Lemma 2 Assume that A ∈ Cm×N satisfies the RIP of order K = k + h with constant

δK ∈ (0, 1). Then A has the NSP of order k with constant γ =
√

k
h
1+δK
1−δK

.

Taking h = 2k above shows that δ3k < 1/3 implies γ < 1. By theorem 1, recovery of all k-sparse

vectors by l1-minimization is then guaranteed. Additionally, stability in l1 is also ensured. The

next theorem shows that RIP implies also a bound on the reconstruction error in l2.

Theorem 2 Assume A ∈ Cm×N satisfies the RIP of order 3k with δ3k < 1/3. For x ∈ CN , let

y = Ax and x∗ be the solution of the l1-minimization problem. Then

‖x− x∗‖2 ≤ C
δk(x)1√

k
, (III.22)

with C = 2
1−γ (γ+1√

2
+ γ), and γ =

√
1+δ3k

2(1−δ3k)
.

III.3 Applying compressed sensing to SAR

The primary interest in compressed sensing research is the inverse problem of recovering a signal

f ∈ CN from noisy linear measurements y = Af + n ∈ CN . The focus is on underdetermined

problems where the forward operator A ∈ CM×N has unit norm columns and forms an incomplete

basis with M � N . The resulting ill-posed inverse problem is regularized assuming: (1) the

unknown signal f is K-sparse or is compressible with K significant coefficients and (2) the noise

process is bounded by ‖ n ‖2< ε. CS theory provides strong results which guarantee stable

solution of the sparse signal recovery problem for a class of forward operators A that satisfies

certain properties. One such class of operators is defined by bounding the singular values of the

submatrices of A. Specifically, the restricted isometry constant (RIC) δK for forward operator A is
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the smallest δ ∈ (0, 1), such that [3]

(1− δK) ‖ x ‖22≤‖ Ax ‖22≤ (1 + δK) ‖ x ‖22, (III.23)

hold for all vectors x with at most K nonzero entries.

One of the key contributions of CS is that stable recovery of compressible, noisy signals can be

achieved through the solution of the computationally tractable l1 regularized inverse problem [3]

min
f
‖ f ‖1 subject to ‖ Af − y ‖22≤ ε2, (III.24)

At present, the least conservative available bound on the reconstruction performance guarantees

that if δ2K <
√

2− 1 and ‖ n ‖2≤ ε, then the solution f̂ will satisfy [4]

‖ f ∗ − f̂ ‖22≤ C0K
−1/2 ‖ f ∗ − fK ‖1 +C1ε, (III.25)

where fK is the best K-sparse approximation to the true solution f ∗, C0 and C1 are small constants,

and ‖ · ‖p represents the lp norm. The optimization can be viewed as the convex relaxation of the

NP-hard task of finding the sparsest feasible solution

min
f
‖ f ‖0 subject to ‖ Af − y ‖22≤ ε, (III.26)

where ‖ · ‖0 is the l0 norm, i.e., the number of nonzero entries in the vector.In radar and other array

processing applications, imperfect calibration implies that precise knowledge of A is not available.

Recent work has shown that a bounded unknown additive disturbance to the matrix A still permits

a RIC-based guarantee on reconstruction performance that reduces to the result as the disturbance

bound approaches zero.

Consider an unknown matrix A ∈ CM×N and an orthonormal basis (Ai)i for CM×N . Then there
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exist coefficients (si)i, such that

A =
MN−1∑
i=0

siAi. (III.27)

Our goal is to identify the coefficients (si)i. Since the basis elements are fixed, identifying (si)i is

tantamount to discovering A. We will do this by designing a test function f = (f0, · · · , fN−1)T ∈

CN and observingAf ∈ CM . Here, (·)T denotes the transpose of a vector or a matrix. For instance,

Amay represent an unknown communication channel which needs to be identified for equalization

purposes.

For simplicity, from now on assume that N = M . The observation vector can be reformulated as

y =
N2−1∑
i=0

siAif =
N2−1∑
i=0

siϕi = Φs, (III.28)

where the i-th atom ϕi = Aif is a column vector of length N , the concatenation of the atoms

Φ = [ϕ0|ϕ1| · · · |ϕN2−1] is an N ×N2 matrix, and s = (s0, s1, · · · , sN2−1)
T is a column vector of

length N2. The system of equation in (III.29) is clearly highly underdetermined. If s is sufficiently

sparse, then there is hope of recovering s from y.
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CHAPTER IV

SAR IMAGING USING COMPRESSED SENSING

An important prerequisite of CS sparse reconstruction is that the signal must be sparse or com-

pressible in certain representations. For SAR imaging, the true 3-D illuminated scene is projected

into the 2-D range-azimuth plane, and then the projected targets are not always sparse. However,

the target space can be regarded as sparse in some special applications in which only a small num-

ber of strong scatterers distribute in the illuminated scene, and the relatively few large coefficients

of the scatterers can capture most of the information on scene, such as ocean ships monitoring,

aircraft and spacecraft detecting, space debris imaging, and so on. Based on the features of s-

parse signal in these applications, the image can be reconstructed by the signal of strong scattering

centers using the theory of CS, and the weak scattering centers can be regarded as noise in image.

IV.1 Random Partial Fourier Matrices

While Gaussian and Bernoulli matrices provide optimal conditions for the minimal number of

required samples for sparse recovery, they are of somewhat limited use for practical applications

for several reasons. Often the application imposes physical or other constraints on the measurement

matrix, so that assuming B to be Gaussian may not be justifiable in practice. One usually has only

limited freedom to inject randomness in the measurements. Furthermore, Gaussian or Bernoulli

matrices are not structured so there is no fast matrix vector multiplication available, which may

speed up recovery algorithms. Thus, Gaussian random matrices are not applicable in large-scale

problems.

A very important class of structured random matrices that overcomes these drawbacks are random

partial Fourier matrices, which were also the object of study in the very first papers on compressive

sensing. A random partial Fourier matrix A ∈ Cm×N is derived from the discrete fourier matrix
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F ∈ Cn×n with entries

Fj,k =
1√
N
e2πjk/N , (IV.1)

by selecting m rows uniformly at random among all N rows. Taking measurements of a sparse

x ∈ CN corresponds then to observing m of the entries of its discrete Fourier Transform x̂ = Fx.

It is important to note that the Fast Fourier Transform may be used to compute matrix vector mul-

tiplication with B and B∗ with complexity O(Nlog(N)). The following theorem concerning the

RIP constant was proven and improves slightly on the results.

Theorem 3 Let B ∈ Cm×N be the random partial fourier matrix as just described. Then the

restricted isometry constant of the rescaled matrix
√

NB
m

satisfy δk ≤ δ with probability at least

1−N−γlog3(N) provided

m ≥ Cδ−2klog4(N), (IV.2)

the constants C, γ > 1 are universal.

Combining the estimate with the l1-minimization results above shows that recovery with high

probability can be ensured for all k-sparse x provided

m ≥ Cklog4(N). (IV.3)

IV.2 Discrete Point Targets

For a set of stationary points the target reflectivity function is usually expressed as a sum of Dirac

delta functions.

V (z) =
∑
j

σjδ(z − zj). (IV.4)

In the case Eq. (II.26) becomes

s(f, x′) =
∑
j

∫
e−2ik|z−x

′|A(f, x′, z)σjδ(z − zj)dz, (IV.5)
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therefore

s(f, x′) =
∑
j

σje
−2ik|zj−x′|A(f, x′, zj), (IV.6)

where

A(f, x′, z) =
f 2

(4π|z − x′|)2
· F (k, ẑ), (IV.7)

and

F (k, ẑ) = p(f)eik
̂(z−x′)·q. (IV.8)

To simulate return data we let P (f) = 1 for f ∈ (fmin, fmax), such that the bandwidth of the

system is β = fmax − fmin.

IV.3 SAR Model And Analysis

In the spirit of CS, a very small number of ’random’ measurements carry enough information

which can accomplish complete reconstruction for the signal. According to the feature of RIP,

all submatrices of Φ are composed of k significant columns which should be nearly orthogonal.

There are some well-known pairs of incoherent basis, such as randomly selected Fourier samples

and random Gaussian matrix. Hence, we randomly select M(O(Klog(N/K)) ≤ M < N) rows

of matrix B as the final measurement matrix Φ ∈ RM×N and then the new measured signal can be

expressed as

S = ΨΦα = Bα, (IV.9)

where Ψ denotes a M×N matrix constructed by randomly selected M rows of the N×N identity

matrix which is taken on orthogonal basis, the randomly selected matrix can be written as



1 0 0 · · · 0 0

0 0 1 · · · 0 0

...
...

0 0 0 · · · 0 1


M×N

In order to use CS, a linear measurement model of SAR should be created firstly. According to
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Chapter II, in discrete scenarios the raw echo signal of SAR can be expressed as

s(f, x′) =
∑
j

σje
−2ik|zj−x′|A(f, x′, zj), (IV.10)

where

A(f, x′, z) =
f 2

(4π|z − x′|)2
· F (k, ẑ), (IV.11)

and

F (k, ẑ) = p(f)eik
̂(z−x′)·q. (IV.12)

Thus, according to the Random Partial Fourier Matrices, the signal can be rewritten as

s(f, x′) = Fj,kα, j, k = 1, 2, · · ·M, (IV.13)

where Fj,k = 1√
M
exp(2πikϕj/M), ϕj = |zj − x′| and α is the other part.
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IV.4 Numerical Simulations

Figure (4.1) shows an example of an image formed using the matched filter algorithm. Phase

history data was simulated for point targets using Eq. (IV.14)

s(f, x′) =
∑
j

σje
−2ik|zj−x′|A(f, x′, zj), (IV.14)

where A(f, x′, z) = 1. Here, Np = 128 pulses were simulated with K = 512 frequency samples

per pulse, a center frequency of 10GHz and a 600MHz bandwidth. A circular fight path was used

with a 30 degree depression angle and a slant range of 10km. A 3 degree integration angle was

used with a center azimuth angle of 50 degrees. The scene extent was 10 m x 10 m with 2 cm pixel

spacing in each dimension.

Figure IV.1: Matched filter image of one point target.
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Basis pursuit will be used to reconstruct this one point, the result is following.

Figure IV.2: Basis pursuit image of one point,which use 1/2 of phase data.

Figure IV.3: Basis pursuit image of one point, which use log4 of phase data.

Then we want to try more points, Thus we use the rocket as a model.
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Figure IV.4: Matched filter image of a rocket

Figure IV.5: Basis pursuit image of a rocket, which use 1/2 of phase data.
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Figure IV.6: Basis pursuit image of a rocket, which use log4 of phase data.
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CHAPTER V

CONCLUSION

In this paper, we derived the SAR signal model from the scalar form of the Maxwell’s equa-

tions. We gave a short introduction to compressed sensing. Then we used compressed sensing

to the SAR signal model. The results have a strong theoretical foundation being derived from an

inverse scattering problem in Maxwell’s equations. It was showed that compressed sensing will be

used to construct point targets, as efficiently as matched filter algorithms.
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