215,012 research outputs found

    A simple yet effective baseline for non-attributed graph classification

    Full text link
    Graphs are complex objects that do not lend themselves easily to typical learning tasks. Recently, a range of approaches based on graph kernels or graph neural networks have been developed for graph classification and for representation learning on graphs in general. As the developed methodologies become more sophisticated, it is important to understand which components of the increasingly complex methods are necessary or most effective. As a first step, we develop a simple yet meaningful graph representation, and explore its effectiveness in graph classification. We test our baseline representation for the graph classification task on a range of graph datasets. Interestingly, this simple representation achieves similar performance as the state-of-the-art graph kernels and graph neural networks for non-attributed graph classification. Its performance on classifying attributed graphs is slightly weaker as it does not incorporate attributes. However, given its simplicity and efficiency, we believe that it still serves as an effective baseline for attributed graph classification. Our graph representation is efficient (linear-time) to compute. We also provide a simple connection with the graph neural networks. Note that these observations are only for the task of graph classification while existing methods are often designed for a broader scope including node embedding and link prediction. The results are also likely biased due to the limited amount of benchmark datasets available. Nevertheless, the good performance of our simple baseline calls for the development of new, more comprehensive benchmark datasets so as to better evaluate and analyze different graph learning methods. Furthermore, given the computational efficiency of our graph summary, we believe that it is a good candidate as a baseline method for future graph classification (or even other graph learning) studies.Comment: 13 pages. Shorter version appears at 2019 ICLR Workshop: Representation Learning on Graphs and Manifolds. arXiv admin note: text overlap with arXiv:1810.00826 by other author

    Developing Human Functioning and Rehabilitation Research from the comprehensive perspective.

    Get PDF
    With the International Classification of Functioning, Disability and Health (ICF) the World Health Organization (WHO) has prepared the ground for a comprehensive understanding of Human Functioning and Rehabilitation Research, integrating the biomedical perspective on impairment with the social model of disability. This poses a number of old and new challenges regarding the enhancement of adequate research capacity. Here we will summarize approaches to address these challenges with respect to 3 areas: the organization of Human Functioning and Rehabilitation Research into distinct scientific fields, the development of suitable academic training programmes and the building of university centres and collaboration networks

    Matching matched filtering with deep networks in gravitational-wave astronomy

    Get PDF
    We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well modeled transient gravitational-wave signals is matched filtering. However, the computational cost of such searches in low latency will grow dramatically as the low frequency sensitivity of gravitational-wave detectors improves. Convolutional neural networks provide a highly computationally efficient method for signal identification in which the majority of calculations are performed prior to data taking during a training process. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same datasets when considering the sensitivity defined by Reciever-Operator characteristics.Comment: 5 pages, 3 figures, submitted to PR

    Solutions to Detect and Analyze Online Radicalization : A Survey

    Full text link
    Online Radicalization (also called Cyber-Terrorism or Extremism or Cyber-Racism or Cyber- Hate) is widespread and has become a major and growing concern to the society, governments and law enforcement agencies around the world. Research shows that various platforms on the Internet (low barrier to publish content, allows anonymity, provides exposure to millions of users and a potential of a very quick and widespread diffusion of message) such as YouTube (a popular video sharing website), Twitter (an online micro-blogging service), Facebook (a popular social networking website), online discussion forums and blogosphere are being misused for malicious intent. Such platforms are being used to form hate groups, racist communities, spread extremist agenda, incite anger or violence, promote radicalization, recruit members and create virtual organi- zations and communities. Automatic detection of online radicalization is a technically challenging problem because of the vast amount of the data, unstructured and noisy user-generated content, dynamically changing content and adversary behavior. There are several solutions proposed in the literature aiming to combat and counter cyber-hate and cyber-extremism. In this survey, we review solutions to detect and analyze online radicalization. We review 40 papers published at 12 venues from June 2003 to November 2011. We present a novel classification scheme to classify these papers. We analyze these techniques, perform trend analysis, discuss limitations of existing techniques and find out research gaps

    Collaboration based Multi-Label Learning

    Full text link
    It is well-known that exploiting label correlations is crucially important to multi-label learning. Most of the existing approaches take label correlations as prior knowledge, which may not correctly characterize the real relationships among labels. Besides, label correlations are normally used to regularize the hypothesis space, while the final predictions are not explicitly correlated. In this paper, we suggest that for each individual label, the final prediction involves the collaboration between its own prediction and the predictions of other labels. Based on this assumption, we first propose a novel method to learn the label correlations via sparse reconstruction in the label space. Then, by seamlessly integrating the learned label correlations into model training, we propose a novel multi-label learning approach that aims to explicitly account for the correlated predictions of labels while training the desired model simultaneously. Extensive experimental results show that our approach outperforms the state-of-the-art counterparts.Comment: Accepted by AAAI-1
    • …
    corecore