16,753 research outputs found

    Comprehensive analysis of human microRNA target networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) mediate posttranscriptional regulation of protein-coding genes by binding to the 3' untranslated region of target mRNAs, leading to translational inhibition, mRNA destabilization or degradation, depending on the degree of sequence complementarity. In general, a single miRNA concurrently downregulates hundreds of target mRNAs. Thus, miRNAs play a key role in fine-tuning of diverse cellular functions, such as development, differentiation, proliferation, apoptosis and metabolism. However, it remains to be fully elucidated whether a set of miRNA target genes regulated by an individual miRNA in the whole human microRNAome generally constitute the biological network of functionally-associated molecules or simply reflect a random set of functionally-independent genes.</p> <p>Methods</p> <p>The complete set of human miRNAs was downloaded from miRBase Release 16. We explored target genes of individual miRNA by using the Diana-microT 3.0 target prediction program, and selected the genes with the miTG score ≧ 20 as the set of highly reliable targets. Then, Entrez Gene IDs of miRNA target genes were uploaded onto KeyMolnet, a tool for analyzing molecular interactions on the comprehensive knowledgebase by the neighboring network-search algorithm. The generated network, compared side by side with human canonical networks of the KeyMolnet library, composed of 430 pathways, 885 diseases, and 208 pathological events, enabled us to identify the canonical network with the most significant relevance to the extracted network.</p> <p>Results</p> <p>Among 1,223 human miRNAs examined, Diana-microT 3.0 predicted reliable targets from 273 miRNAs. Among them, KeyMolnet successfully extracted molecular networks from 232 miRNAs. The most relevant pathway is transcriptional regulation by transcription factors RB/E2F, the disease is adult T cell lymphoma/leukemia, and the pathological event is cancer.</p> <p>Conclusion</p> <p>The predicted targets derived from approximately 20% of all human miRNAs constructed biologically meaningful molecular networks, supporting the view that a set of miRNA targets regulated by a single miRNA generally constitute the biological network of functionally-associated molecules in human cells.</p

    miRSel: automated extraction of associations between microRNAs and genes from the biomedical literature.

    Get PDF
    Background MicroRNAs have been discovered as important regulators of gene expression. To identify the target genes of microRNAs, several databases and prediction algorithms have been developed. Only few experimentally confirmed microRNA targets are available in databases. Many of the microRNA targets stored in databases were derived from large-scale experiments that are considered not very reliable. We propose to use text mining of publication abstracts for extracting microRNA-gene associations including microRNA-target relations to complement current repositories. Results The microRNA-gene association database miRSel combines text-mining results with existing databases and computational predictions. Text mining enables the reliable extraction of microRNA, gene and protein occurrences as well as their relationships from texts. Thereby, we increased the number of human, mouse and rat miRNA-gene associations by at least three-fold as compared to e.g. TarBase, a resource for miRNA-gene associations. Conclusions Our database miRSel offers the currently largest collection of literature derived miRNA-gene associations. Comprehensive collections of miRNA-gene associations are important for the development of miRNA target prediction tools and the analysis of regulatory networks. miRSel is updated daily and can be queried using a web-based interface via microRNA identifiers, gene and protein names, PubMed queries as well as gene ontology (GO) terms. miRSel is freely available online at http://services.bio.ifi.lmu.de/mirse

    MMpred: functional miRNA – mRNA interaction analyses by miRNA expression prediction

    Get PDF
    Background: MicroRNA (miRNA) directed gene repression is an important mechanism of posttranscriptional regulation. Comprehensive analyses of how microRNA influence biological processes requires paired miRNA-mRNA expression datasets. However, a review of both GEO and ArrayExpress repositories revealed few such datasets, which was in stark contrast to the large number of messenger RNA (mRNA) only datasets. It is of interest that numerous primary miRNAs (precursors of microRNA) are known to be co-expressed with coding genes (host genes). Results: We developed a miRNA-mRNA interaction analyses pipeline. The proposed solution is based on two miRNA expression prediction methods – a scaling function and a linear model. Additionally, miRNA-mRNA anticorrelation analyses are used to determine the most probable miRNA gene targets (i.e. the differentially expressed genes under the influence of up- or down-regulated microRNA). Both the consistency and accuracy of the prediction method is ensured by the application of stringent statistical methods. Finally, the predicted targets are subjected to functional enrichment analyses including GO, KEGG and DO, to better understand the predicted interactions. Conclusions: The MMpred pipeline requires only mRNA expression data as input and is independent of third party miRNA target prediction methods. The method passed extensive numerical validation based on the binding energy between the mature miRNA and 3’ UTR region of the target gene. We report that MMpred is capable of generating results similar to that obtained using paired datasets. For the reported test cases we generated consistent output and predicted biological relationships that will help formulate further testable hypotheses

    MicroRNA and transcription factor co-regulatory networks and subtype classification of seminoma and non-seminoma in testicular germ cell tumors

    Get PDF
    Recent studies have revealed that feed-forward loops (FFLs) as regulatory motifs have synergistic roles in cellular systems and their disruption may cause diseases including cancer. FFLs may include two regulators such as transcription factors (TFs) and microRNAs (miRNAs). In this study, we extensively investigated TF and miRNA regulation pairs, their FFLs, and TF-miRNA mediated regulatory networks in two major types of testicular germ cell tumors (TGCT): seminoma (SE) and non-seminoma (NSE). Specifically, we identified differentially expressed mRNA genes and miRNAs in 103 tumors using the transcriptomic data from The Cancer Genome Atlas. Next, we determined significantly correlated TF-gene/miRNA and miRNA-gene/TF pairs with regulation direction. Subsequently, we determined 288 and 664 dysregulated TF-miRNA-gene FFLs in SE and NSE, respectively. By constructing dysregulated FFL networks, we found that many hub nodes (12 out of 30 for SE and 8 out of 32 for NSE) in the top ranked FFLs could predict subtype-classification (Random Forest classifier, average accuracy ≥90%). These hub molecules were validated by an independent dataset. Our network analysis pinpointed several SE-specific dysregulated miRNAs (miR-200c-3p, miR-25-3p, and miR-302a-3p) and genes (EPHA2, JUN, KLF4, PLXDC2, RND3, SPI1, and TIMP3) and NSE-specific dysregulated miRNAs (miR-367-3p, miR-519d-3p, and miR-96-5p) and genes (NR2F1 and NR2F2). This study is the first systematic investigation of TF and miRNA regulation and their co-regulation in two major TGCT subtypes

    MicroRNAs in the stressed heart: Sorting the signal from the noise

    Get PDF
    The short noncoding RNAs, known as microRNAs, are of undisputed importance in cellular signaling during differentiation and development, and during adaptive and maladaptive responses of adult tissues, including those that comprise the heart. Cardiac microRNAs are regulated by hemodynamic overload resulting from exercise or hypertension, in the response of surviving myocardium to myocardial infarction, and in response to environmental or systemic disruptions to homeostasis, such as those arising from diabetes. A large body of work has explored microRNA responses in both physiological and pathological contexts but there is still much to learn about their integrated actions on individual mRNAs and signaling pathways. This review will highlight key studies of microRNA regulation in cardiac stress and suggest possible approaches for more precise identification of microRNA targets, with a view to exploiting the resulting data for therapeutic purposes

    MicroRNA dysregulation and esophageal cancer development depend on the extent of zinc dietary deficiency

    Get PDF
    open9siopenFong, Louise Y.; Taccioli, Cristian; Jing, Ruiyan; Smalley, Karl J.; Alder, Hansjuerg; Jiang, Yubao; Fadda, Paolo; Farber, John L.; Croce, Carlo M.Fong, Louise Y.; Taccioli, Cristian; Jing, Ruiyan; Smalley, Karl J.; Alder, Hansjuerg; Jiang, Yubao; Fadda, Paolo; Farber, John L.; Croce, Carlo M

    Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: Role of microRNA-133a.

    Get PDF
    A comprehensive genomic and proteomic, computational, and physiological approach was employed to examine the (previously unexplored) role of microRNAs (miRNAs) as regulators of internal anal sphincter (IAS) smooth muscle contractile phenotype and basal tone. miRNA profiling, genome-wide expression, validation, and network analyses were employed to assess changes in mRNA and miRNA expression in IAS smooth muscles from young vs. aging rats. Multiple miRNAs, including rno-miR-1, rno-miR-340-5p, rno-miR-185, rno-miR-199a-3p, rno-miR-200c, rno-miR-200b, rno-miR-31, rno-miR-133a, and rno-miR-206, were found to be upregulated in aging IAS. qPCR confirmed the upregulated expression of these miRNAs and downregulation of multiple, predicted targets (Eln, Col3a1, Col1a1, Zeb2, Myocd, Srf, Smad1, Smad2, Rhoa/Rock2, Fn1, Tagln v2, Klf4, and Acta2) involved in regulation of smooth muscle contractility. Subsequent studies demonstrated an aging-associated increase in the expression of miR-133a, corresponding decreases in RhoA, ROCK2, MYOCD, SRF, and SM22α protein expression, RhoA-signaling, and a decrease in basal and agonist [U-46619 (thromboxane A2 analog)]-induced increase in the IAS tone. Moreover, in vitro transfection of miR-133a caused a dose-dependent increase of IAS tone in strips, which was reversed by anti-miR-133a. Last, in vivo perianal injection of anti-miR-133a reversed the loss of IAS tone associated with age. This work establishes the important regulatory effect of miRNA-133a on basal and agonist-stimulated IAS tone. Moreover, reversal of age-associated loss of tone via anti-miR delivery strongly implicates miR dysregulation as a causal factor in the aging-associated decrease in IAS tone and suggests that miR-133a is a feasible therapeutic target in aging-associated rectoanal incontinence

    Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs

    Get PDF
    Background: MicroRNAs (miRNAs) have been shown to play an important role in pathological initiation, progression and maintenance. Because identification in the laboratory of disease-related miRNAs is not straightforward, numerous network-based methods have been developed to predict novel miRNAs in silico. Homogeneous networks (in which every node is a miRNA) based on the targets shared between miRNAs have been widely used to predict their role in disease phenotypes. Although such homogeneous networks can predict potential disease-associated miRNAs, they do not consider the roles of the target genes of the miRNAs. Here, we introduce a novel method based on a heterogeneous network that not only considers miRNAs but also the corresponding target genes in the network model. Results: Instead of constructing homogeneous miRNA networks, we built heterogeneous miRNA networks consisting of both miRNAs and their target genes, using databases of known miRNA-target gene interactions. In addition, as recent studies demonstrated reciprocal regulatory relations between miRNAs and their target genes, we considered these heterogeneous miRNA networks to be undirected, assuming mutual miRNA-target interactions. Next, we introduced a novel method (RWRMTN) operating on these mutual heterogeneous miRNA networks to rank candidate disease-related miRNAs using a random walk with restart (RWR) based algorithm. Using both known disease-associated miRNAs and their target genes as seed nodes, the method can identify additional miRNAs involved in the disease phenotype. Experiments indicated that RWRMTN outperformed two existing state-of-the-art methods: RWRMDA, a network-based method that also uses a RWR on homogeneous (rather than heterogeneous) miRNA networks, and RLSMDA, a machine learning-based method. Interestingly, we could relate this performance gain to the emergence of "disease modules" in the heterogeneous miRNA networks used as input for the algorithm. Moreover, we could demonstrate that RWRMTN is stable, performing well when using both experimentally validated and predicted miRNA-target gene interaction data for network construction. Finally, using RWRMTN, we identified 76 novel miRNAs associated with 23 disease phenotypes which were present in a recent database of known disease-miRNA associations. Conclusions: Summarizing, using random walks on mutual miRNA-target networks improves the prediction of novel disease-associated miRNAs because of the existence of "disease modules" in these networks
    corecore