29 research outputs found

    Prediction of potential commercially inhibitors against SARS-CoV-2 by multi-task deep model

    Full text link
    The outbreak of novel coronavirus pneumonia (COVID-19) caused thousands of deaths worldwide, and the number of total infections is still rising. However, the development of effective vaccine for this novel virus would take a few months. Thus it is urgent to identify some potentially effective old drugs that can be used immediately. Fortunately, some compounds that can inhibit coronavirus in vitro have been reported. In this study, the coronavirus-specific dataset was used to fine-tune our pre-trained multi-task deep model. Next we used the re-trained model to select available commercial drugs against targeted proteins of SARS-CoV-2. The results show that abacavir, a powerful nucleoside analog reverse transcriptase inhibitor used to treat HIV, is predicted to have high binding affinity with several proteins of SARS-CoV-2. Almitrine mesylate and roflumilast which are used for respiratory diseases such as chronic obstructive pulmonary disease are also predicted to have inhibitory effect. Overall, ten drugs are listed as potential inhibitors and the important sites for these binding by our model are exhibited. We hope these results would be useful in the fight against SARS-CoV-2

    Performance Comparison of Data Sampling Techniques to Handle Imbalanced Class on Prediction of Compound-Protein Interaction

    Get PDF
    The prediction of Compound-Protein Interactions (CPI) is an essential step in the drug-target analysis for developing new drugs as well as for drug repositioning. One challenging issue in this field is that commonly there are more numbers of non-interacting compound-protein pairs than interacting pairs. This problem causes bias, which may degrade the prediction of CPI. Besides, currently, there is not much research on CPI prediction that compares data sampling techniques to handle the class imbalance problem. To address this issue, we compare four data sampling techniques, namely Random Under-sampling (RUS), Combination of Over-Under-sampling (COUS), Synthetic Minority Over-sampling Technique (SMOTE), and Tomek Link (T-Link). The benchmark CPI data: Nuclear Receptor and G-Protein Coupled Receptor (GPCR) are used to test these techniques. Area Under Curve (AUC) applied to evaluate the CPI prediction performance of each technique. Results show that the AUC values for RUS, COUS, SMOTE, and T-Link are 0.75, 0.77, 0.85 and 0.79 respectively on Nuclear Receptor data and 0.70, 0.85, 0.91 and 0.72 respectively on GPCR data. These results indicate that SMOTE has the highest AUC values. Furthermore, we found that the SMOTE technique is more capable of handling class imbalance problems on CPI prediction compared to the remaining three other techniques

    Graph neural networks and attention-based CNN-LSTM for protein classification

    Full text link
    This paper focuses on three critical problems on protein classification. Firstly, Carbohydrate-active enzyme (CAZyme) classification can help people to understand the properties of enzymes. However, one CAZyme may belong to several classes. This leads to Multi-label CAZyme classification. Secondly, to capture information from the secondary structure of protein, protein classification is modeled as graph classification problem. Thirdly, compound-protein interactions prediction employs graph learning for compound with sequential embedding for protein. This can be seen as classification task for compound-protein pairs. This paper proposes three models for protein classification. Firstly, this paper proposes a Multi-label CAZyme classification model using CNN-LSTM with Attention mechanism. Secondly, this paper proposes a variational graph autoencoder based subspace learning model for protein graph classification. Thirdly, this paper proposes graph isomorphism networks (GIN) and Attention-based CNN-LSTM for compound-protein interactions prediction, as well as comparing GIN with graph convolution networks (GCN) and graph attention networks (GAT) in this task. The proposed models are effective for protein classification. Source code and data are available at https://github.com/zshicode/GNN-AttCL-protein. Besides, this repository collects and collates the benchmark datasets with respect to above problems, including CAZyme classification, enzyme protein graph classification, compound-protein interactions prediction, drug-target affinities prediction and drug-drug interactions prediction. Hence, the usage for evaluation by benchmark datasets can be more conveniently

    Deep Learning-Based Conformal Prediction of Toxicity

    Get PDF
    Predictive modeling for toxicity can help reduce risks in a range of applications and potentially serve as the basis for regulatory decisions. However, the utility of these predictions can be limited if the associated uncertainty is not adequately quantified. With recent studies showing great promise for deep learning-based models also for toxicity predictions, we investigate the combination of deep learning-based predictors with the conformal prediction framework to generate highly predictive models with well-defined uncertainties. We use a range of deep feedforward neural networks and graph neural networks in a conformal prediction setting and evaluate their performance on data from the Tox21 challenge. We also compare the results from the conformal predictors to those of the underlying machine learning models. The results indicate that highly predictive models can be obtained that result in very efficient conformal predictors even at high confidence levels. Taken together, our results highlight the utility of conformal predictors as a convenient way to deliver toxicity predictions with confidence, adding both statistical guarantees on the model performance as well as better predictions of the minority class compared to the underlying models
    corecore