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Abstract 

Predictive modelling for toxicity can help reduce risks in a range of applications and potentially 

serve as the basis for regulatory decisions. However, the utility of these predictions can be limited 

if the associated uncertainty is not adequately quantified. With recent studies showing great 

promise for deep learning-based models also for toxicity predictions, we investigate the 

combination of deep learning-based predictors with the conformal prediction framework to 

generate highly predictive models with well-defined uncertainties. We use a range of deep 

feedforward neural networks and graph neural networks in a conformal prediction setting and 

evaluate their performance on data from the Tox21 challenge. We also compare the results from 

the conformal predictors to those of the underlying machine learning models. The results indicate 

that highly predictive models can be obtained that result in very efficient conformal predictors 

even at high confidence levels. Taken together, our results highlight the utility of conformal 

predictors as a convenient way to deliver toxicity predictions with confidence, adding both 

statistical guarantees on the model performance as well as better predictions of the minority class 

compared to the underlying models. 
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Introduction 

Deep learning methods have attracted increasing attention in the sphere of drug discovery and 

design,1,2 as well as toxicity prediction.3–5 While in many cases delivering state-of-the-art 

predictivity, it has proven a challenge to generate accurately calibrated outputs6 and many 

implementations struggle with imbalanced data.7 

Several deep learning methods have been implemented in molecular property prediction.1 Two 

of the most popular methods are deep feedforward neural networks and graph neural networks. 

Deep feedforward neural network uses precalculated molecular representations such as molecular 

descriptors and fingerprints as the inputs. The weights and bias of the hidden units in multiple fully 

connected hidden layers are calculated using backpropagation and optimization. The prediction 

results are given by the activation functions in the output layer. Graph neural networks use 

molecules represented as nodes that approximate the atoms and edges that approximate the bonds. 

Graph neural networks are connectionist models that consider the dependence of graphs via 

message passing between the nodes of graphs. Several variants of graph neural networks have been 

developed including graph convolutional networks, graph attention networks, message passing 

neural networks, and r-radius subgraph graph neural networks.8 

Conformal prediction is a type of confidence predictor that generates predictions with a, by the 

user, defined error rate.9 This is achieved by the predictor by outputting prediction ranges rather 

than single predictions. At a certain confidence level, that fraction of all prediction ranges will 

include the correct label or value (for classification and regression problems respectively). One of 

the benefits with conformal prediction is that it can be applied on a class-by-class basis, called a 

Mondrian conformal predictor, guaranteeing the error rate for each class independently. This is 
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especially useful for imbalanced classification problems where this can reduce the bias 

substantially.10–12 

Conformal prediction is a flexible framework that can be used with any underlying model by 

calibrating the outputs from the predictor using a calibration set. Any machine learning algorithm 

can therefore be made into a conformal predictor with only moderate changes to the pipeline.13 

This includes deep learning methods and a few examples have been reported in the literature.14–16 

However, this combination has not previously been explored for toxicity predictions. 

With a vision to remove animal testing from regulatory toxicology, there is a drive to develop 

alternative approaches for safety assessment that also include the use of computational methods.5 

To be useful in such a setting or for any form of risk-assessment, it is crucial that the limitations 

and reliability of the computational approaches can be accurately assessed. Conformal prediction 

has previously been suggested to nicely fulfil these requirements with a lot less ambiguity than 

many other methods to assess prediction reliability.17,18 

As part of the drive to develop improved methods for toxicity assessment the Tox21 project was 

launched to provide a wide range of data on toxicologically relevant targets.19 Data from this 

project was the basis of the Tox21 challenge20 and has been used in a range of publications on 

computational models for toxicity. The successful introduction of more computational methods in 

supporting regulatory decisions not only require quantification of the prediction confidence but 

also highly predictive models. Deep learning methods have shown great promise in toxicity 

predictions,21–23 notably by achieving first place in the Tox21 Data Challenge.3 As discussed 

above, predictions of toxicity is a field where prediction confidence is paramount,24 but most deep 

learning methods do not give accurate quantification of the prediction uncertainty. Some methods 

such as Bayesian neural networks have been shown to work well on toxicity predictions.25 While 
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these results are encouraging, they lack the flexibility associated with conformal prediction where 

any underlying model can be transformed into a conformal predictor. The combination of deep 

learning and conformal prediction is therefore an attractive choice for toxicity predictions and 

might help define a robust framework for reliability estimation that is useful also in regulatory 

contexts.18 To our knowledge, this has not been demonstrated previously in the literature. 

Our aim with this study is to demonstrate how conformal prediction can help construct deep 

learning-based predictors with associated quantitative uncertainty measures that perform well also 

for imbalanced data. We demonstrate various approaches to achieve this, using several different 

deep learning architectures and evaluating the performance of the conformal predictors against the 

underlying models on data from the Tox21 challenge. 

Materials and Methods 

Data 

We used the training data from the Tox21 challenge (Table 1).26 The dataset contains toxicities 

of the tested compounds on 12 nuclear receptors and stress response related targets measured in in 

vitro test systems. We have previously reported on the use of this data for prediction evaluation.27 

The compound structures were standardized using the IMI eTOX project standardizer28 in 

combination with tautomer standardization using the MolVS29 standardizer. RDKit molecular 

descriptors30 (consisting of 97 structural and physicochemical properties, previously described and 

listed in ref 12) as well as Morgan fingerprints (FP) (an extended-connectivity FP)31, calculated 

with radius=4 and hashed to 1024 bits, were calculated for all structures. The values of molecular 

descriptors were scaled to the range between 0 and 1 using the MinMaxScaler function from the 

scikit-learn package. 

Table 1. Summary of the Tox21 datasets used in this study. 
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Dataset Target #active #inactive 

nr-ahr aryl hydrocarbon receptor 942 7103 

nr-ar androgen receptor 376 8843 

nr-ar-lbd androgen receptor ligand binding 

domain 

302 8174 

nr-aromatase aromatase 346 6759 

nr-er estrogen receptor 927 6665 

nr-er-lbd estrogen receptor ligand binding 

domain 

441 8187 

nr-ppar-gamma peroxisome proliferator-activated 

receptor gamma 

219 7848 

sr-are nuclear factor (erythroid-derived 2)-

like 2 antioxidant responsive element 

1078 6003 

sr-atad5 genotoxicity indicated by ATAD5 334 8628 

sr-hse heat shock factor response element 419 7635 

sr-mmp mitochondrial membrane potential 1127 6096 

sr-p53 DNA damage p53-pathway 528 7981 

 

Modelling 

The datasets are divided into active and inactive and this investigation was accordingly 

formulated as a binary classification problem. Models were trained using ten-fold cross validation 

implemented using scikit-learn32 StratifiedKFold splitting. In each fold, 10% of the training data 

was set aside for validation (used for early stopping of the deep learning-based methods training 

and discarded for all other methods for comparability) and 20% of the remaining training data used 

as a calibration set. The final remaining portion of the training data, called proper training set in 

conformal prediction, was used to train the model. 
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We applied several deep neural network architectures as well as the decision tree-based 

algorithms Random Forest33 (RF) and LightGBM34. RFs were implemented using the scikit-learn 

function RandomForestClassifier and LightBGM using the lightgbm python package. For deep 

learning we used one four and one eight-layer feed forward deep neural network (DNN4 and 

DNN8 respectively) as well as several different implementations of graph convolutional neural 

networks; graph attention network (GAT), graph convolutional network (GCN), and r-radius 

subgraph graph neural network (GNN)35. Details of model setup and hyperparameters are listed in 

the Supporting Information. 

The DNN4 represents the shallow but wide neural network class, whereas DNN8 represents the 

deep but narrow neural network class. Both classes have been applied for the various classification 

tasks, but the conclusions on their performance comparisons are contradictory. He et al. concluded 

that the depth of representations plays a central role in feature recognitions and recommended 

deeper but narrow networks.36 However, Zagoruyko et al. reported that a wide but shallow network 

outperforms in accuracy and efficiency all previous deep but thin networks.37 Mhaskar et al. also 

suggested that wide network architectures can be better suited for small datasets whereas deep 

networks trained on large datasets can represent functions that shallow networks cannot.38 Here 

we implemented both classes of deep neural networks. The molecular inputs of graphical neural 

network methods (GAT, GCN, GNN) are the standardized chemical structures of the compounds 

represented in SMILES format. The label inputs are the outcomes in different toxicity endpoints 

of corresponding compounds. The atom feature representations of input molecules in GAT and 

GCN were calculated using the CanonicalAtomFeaturizer function in the dgl module. The atom 

type, atom degree, formal charge, hybridization, aromaticity of the atom in the input molecules 
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were represented in one hot encodings. GNN used similar atom characteristics as well as 

neighboring bond information for feature representation. 

RangerLars (as implemented in Pytorch-tools, based on https://github.com/mgrankin/over9000) 

was used as the optimization algorithm for DNN4, DNN8, GAT, and GCN. RangerLARS is a 

synergistic optimizer that integrates RAdam39, LookAhead40, and Layer-wise Adaptive Rate 

Scaling (LARS)41 optimizers and inherit their advantages. The RangerLARS optimizer allows 

large learning rate, weight decay and batch size to be used when training the models, which could 

result in short training time and better model performance. 

The Tox21 datasets are imbalanced with regards to active and inactive compound classes. Class 

weights for each dataset were calculated using the ‘balanced’ setting LGBM and RF and applied 

to penalize the ML algorithms for misclassification of the minority class to achieve balanced 

prediction results. Similar Class weights were calculated and used for the loss function for the 

DNN, GCN and GAT models. The predicted class probabilities of the compounds were calculated 

using the softmax function in all deep learning-based models. 

Conformal prediction 

A conformal predictor will make valid predictions based on a user defined significance level. 

The significance level is the percentage of, to the user, acceptable errors that the model may 

commit. A calibration set, e.g. randomly split off from the training set before training, with known 

labels is used to perform a recalibration of the output from the machine learning model on the test 

set compounds. 

If the prediction outcome for a new compound, after comparison to the calibration set, is higher 

than the set significance level the new compound is assigned that class label. This comparison is 

performed for each new compound and each label (class) in the dataset. Thus, for a binary 

https://github.com/mgrankin/over9000
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classification problem four possible outcomes exist. A new compound can be labeled with either 

of the two classes, assigned both labels (both classification) or none of the labels (empty 

classification). For discussions related to the validity and efficiency of conformal prediction 

results, see Results and Discussion section. 

To generate conformal predictors, we either employed the package nonconformist 

(https://github.com/donlnz/nonconformist), that takes scikit-learn like models and automatically 

handles the calculations for conformal prediction, or we employed our in-house script for models 

not compatible with nonconformist. These two implementations are designed to be as close as 

possible to functionally identical and the in-house script was only applied when models were not 

compatible with the nonconformist package. While it is convenient to use nonconformist, any 

model can easily be converted to a conformal predictor. For a practical walkthrough on how this 

is achieved please see Norinder et al.13 

For the in-house script we employed the output from the respective models as nonconformity 

score. For non-conformist, all settings were left at default unless otherwise noted. To achieve 

Mondrian conformal prediction in nonconformist the following condition was used in the ICP 

function. Condition = lambda x: x[1] 

Model evaluation 

Conformal prediction generates a prediction interval rather than a single label. For a binary 

prediction problem four different outcomes are possible: either of the two labels, both labels, or 

no label. Conformal predictors are proven to be valid as long as the data is exchangeable.9 Validity 

is measured as the fraction of predictions that include the correct label, also including cases with 

both labels in the binary case. At a specified confidence level, the predictor is said to be valid if 

the fraction of predictions containing the correct label is equal to or higher than the set confidence 
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level. For example, at the 80% confidence level (sometimes called the 0.2 significance level, with 

significance being 1 - confidence level) at least 80% of the predictions should include the correct 

label. Additionally, since we preferably would like the more useful single label output, we 

calculate the efficiency of the models. Efficiency is defined as the fraction of predictions with a 

single label (irrespectively of it being correct), a model with a higher fraction of single label 

predictions is more efficient. The desired output from a conformal predictor should be valid with 

an error rate corresponding to the confidence level (higher validity models are referred to as over 

conservative) and with as high efficiency as possible. For a more in-depth explanation of 

conformal prediction including examples we refer the reader to Norinder et al.13 

We also evaluated the predictivity of the underlying models using balanced accuracy (BA), 

sensitivity, specificity, ROC, F1 score, Kappa, Precision, and Matthews correlation coefficient 

(MCC). These metrics were calculated using the corresponding scikit-learn functions. The 

calculated metrics for all underlying models were given in the Supporting Information. For 

comparison we also calculated some of these metrics for both initial predicted class probabilities 

and the conformal output, where the metrics were calculated only for the single label predictions 

using the confidence level that generated the highest balanced efficiency (mean value for 

efficiency of the minority and majority class, respectively). 

All model evaluation was calculated using the aggregated results from the cross validation. 

 

Results and Discussion 

For conformal predictors to be useful, the desired output is a high number of single label 

predictions while also being valid. We therefore evaluate the results primarily using the standard 

conformal prediction metrics efficiency and validity, for more details please see the Materials and 
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Methods section. All datasets were modelled using ten-fold cross validation using the selected 

machine learning methods for this study. All methods generated valid (an error rate corresponding 

to the set confidence level) and efficient conformal predictors (see the Supporting Information for 

tabled data). Figure 1-6 show the efficiency of the cross-validation test set predictions for the 

different models based on fingerprints, RDKit descriptors, and graph convolutions for active and 

inactive compounds. 

 

Figure 1. Efficiency for the fingerprint-based models for the active class across all datasets at 

different significance levels (sig_lvl). 
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Figure 2. Efficiency for the fingerprint-based models for the inactive class across all datasets at 

different significance levels (sig_lvl). 
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Figure 3. Efficiency for the RDKit descriptor-based models for the active class across all datasets 

at different significance levels (sig_lvl). 
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Figure 4. Efficiency for the RDKit descriptor-based models for the inactive class across all 

datasets at different significance levels (sig_lvl). 
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Figure 5. Efficiency for graph convolution models for the active class across all datasets at 

different significance levels (sig_lvl). 
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Figure 6. Efficiency for graph convolution models for the inactive class across all datasets at 

different significance levels (sig_lvl). 

Most of the results follow a typical pattern where the average efficiency across datasets peaks at 

about 75%-80% confidence (0.25-0.2 significance level) while higher confidence levels result in 

more dual predictions and lower confidence levels in more empty predictions. Not all datasets are 

equally well modelled with notably lower efficiencies observed for the nr-er dataset. Similar trends 

have been observed previously.15 These results demonstrate that conformal predictors can reach 

levels of efficiency that makes them highly usable in predictive toxicology tasks. 

To demonstrate how to interpret the output from a conformal predictor, the output is exemplified 

in Figure 7 with the results from the fingerprint based nr-ahr DNN8 model (additional examples 

available in the Supporting Information). A conformal p-value is obtained for each class and in 
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conjunction with the desired significance level these are used to derive the prediction labels (a p-

value > the significance level assigns the label). For the example compound the p-values are 

relatively low for both classes but clearly higher for the toxic class indicating a toxic compound, 

as also indicated by the label assignment. If a very high confidence is required, no label can be 

excluded and the compound gets predicted to belong to both classes, but from 85% to 75% 

confidence the compound received a single label as toxic. The output allows for balanced 

evaluation of individual compounds and has the potential to enhance chemical risk assessment. 

 

Figure 7. Example of the output from the conformal prediction for a selected compound from the 

nr-ahr dataset. The underlying model is the fingerprint based DNN8. A p-value is generated for 

each class and compared to the desired confidence level (1-significance level) to derive the labels. 

The average efficiencies of the models across all datasets are shown in Figure 8. From a practical 

point of view, the performance of these models is sufficient to make them highly usable, generating 

about 90% single label predictions with an overall confidence of 80% or above. Notably is also 
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that this performance holds for the minority class (toxic compounds) despite the for some datasets 

strong class imbalance (Table 1). This is a highly desirable feature for toxicity prediction where 

we are generally mostly interested in the minority class. 

 

Figure 8. Average efficiency for the different algorithms across all datasets at different 

significance levels (sig_lvl). 

Having established that the conformal predictors showed good performance, we also wanted to 

evaluate the performance of the underlying models and relate this to the output from the conformal 

predictors. This is a key aspect since the conformal predictors can be constructed from any 

underlying model. If conformal prediction consistently brings advantages over the underlying 

models this would thus be highly advantageous to understand. Figure 9 shows the average BA and 

MCC for the different models derived based on initial predicted class probabilities and conformal 
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prediction results (full list of metrics available in the Supporting Information). In this study, we 

implemented two major types of deep learning algorithms i.e. deep feed forward neural networks 

and graphical neural networks. One of the graph-based models (GCN) outperformed the other 

models in terms of balanced accuracy and MCC. However, we would like to stress that this might 

depend on the hyperparameters used (Supporting Information). We also observed that the deep 

feed forward neural networks (DNN4 and DNN8) gave similar but slightly worse predictivity than 

LightGBM, which is consistent with what we previously reported.27  

The Tox21 datasets have been widely used to assess methods for predicting compound 

toxicity.42,43 To help put the performance of the models in perspective, we also provide the results 

for the GCN and GAT models on the Tox21 test sets in the Supporting Information (Figure S4 and 

S5) along with tabulated performance for previously reported models.3,44–46 Our best models are 

comparable to some of the top leaderboard submissions, although not the best performing. Our 

best model had an average AUC of 0.734 compared to a range of reported AUCs of 0.576-0.874. 

However, the key aspect we are investigating in this study is the utility of conformal-prediction 

for toxicity predictions. The comparison of the different properties and performance of the 

conformal predictors and the respective underlying model is likely to transfer also to other models. 

Thus, if other models have superior predictive power for the investigated endpoint, those models 

could be made into conformal predictors and the results would be expected to follow the same 

trends as reported here. 

High efficiency from the conformal predictor is linked to a strong predictive power of the 

underlying model. Very good performance is observed for the graph-based deep learning model 

GCN. This method also had a very high efficiency at the 90% confidence level (Figure 5 and 6). 

Conversely, methods with poorer performance tend to have their peak efficiency at lower 
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confidence levels. Overall, this shows that the best conformal predictors (highly efficient at high 

confidence levels) are being derived from the best performing underlying model.  

From Figure 9 two main cases emerge with respect to the performance of the underlying model 

when compared with the conformal prediction framework: 

1. High performing underlying models such as GCN, do not gain in predictive performance. This 

is not that surprising as it is very difficult to achieve better predictions. However, the addition of 

the conformal prediction framework ensures a stringent handling of the applicability domain (AD) 

of the model, clearly indicating for which compounds a single label prediction cannot be made. 

2. Most of the other models benefit from the CP framework by retrieving more minority class 

compounds, BA increases, albeit often at the expense of more false positives, MCC decreases. 

Furthermore, for imbalance data sets the application of the conformal prediction framework 

resolves the problem of how to adjust the cut-off level for label classification by using a stringent 

and mathematically proven procedure for reclassification.10 At the same time, conformal 

prediction allows the user to set an acceptable confidence level for the predictions. 

Overall, conformal prediction tends to retrieve more examples of the minority class at the 

expense of a slightly higher false positive rate. In a toxicity prediction setting, we believe this is a 

favorable balance as it reduces the number of potentially toxic instances missed by the model. 
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Figure 9. Selected average performance metrics on the test set for the underlying models and 

corresponding conformal predictions models at maximum balanced efficiency. 

While the best performance was observed for a graph-based deep learning-based model in this 

study, this was not true for all inputs and datasets. This illustrates that the choice of algorithm is 

not always straightforward and that in addition to predictivity, other aspects such as training time 

and interpretability should also be considered. It is therefore important to select the underlying 

model judiciously. With conformal prediction being agnostic to the type of underlying model, we 

encourage users to also look beyond the models applied in this study, especially for tasks where 

other models have been shown to have excellent performance.   
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Overall, our study highlights two areas where conformal predictors add value compared to the 

underlying model. Firstly, all our conformal predictors generated valid models, thus delivering the 

error rate expected at the selected confidence level. This allows the user to tune the predictions to 

a confidence that fits the task at hand. Secondly, we demonstrated that the conformal predictors 

generally retrieved more examples of the toxic (minority) class, thus reducing the risk of false 

negatives, albeit at the cost of more false positives. 

The form of conformal prediction used in this study, with one calibration set split at random 

from the testing data for each cross-validation loop, can in some settings be impacted by what 

compounds end up in the calibration set. To counter this, and make more efficient use of the 

available data, an alternative is to train multiple conformal predictors with different calibration set 

splits and aggregate the results. This can be done either by bootstrapping the different calibration 

sets or in a cross validation like fashion.47,48 For deep learning methods the problem can be that 

the sometimes very long training times make this approach practically difficult.  One solution that 

has been proposed to this is to generate snapshot learners.14  

The results from this study in our opinion further strengthens the position of conformal 

prediction for toxicity predictions and regulatory applications. Since the conformal prediction 

framework associated each instance with a well-defined probability to belong to each class, the 

result is readily interpretable and more confident predictions are easy to separate from less 

confident ones. This is especially attractive as any underlying model can be used for conformal 

prediction. In our opinion, this makes these models highly suitable for computational toxicology. 
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Conclusions 

In this study we have demonstrated that deep learning based conformal predictors can generate 

highly predictive models with associated confidence for endpoints from the Tox21 challenge. 

Compared to the underlying models, conformal prediction adds both a controllable error rate as 

well as better recall of the toxic compounds. In our opinion, the combination of high predictive 

performance and confidence make deep learning based conformal predictors highly desirable for 

many tasks in predictive toxicology. 

We were able to achieve  an efficiency greater than 80% for the toxic class at the 90% confidence 

level using a graph convolutional network as the underlying model, making it an attractive model 

for these tasks. However, the benefits from conformal prediction can be leveraged using any 

underlying machine learning model. 

Data and Software Availability 

Python code used for the calculations in this study is available on 

https://github.com/FredrikSvenssonUK/tox21_conformal 

All datasets used in this study are available from the Tox21 challenge web portal 

https://tripod.nih.gov/tox21/challenge/data.jsp (Accessed April 21 2018) 

Supporting Information: 

Tabulated performance data for all models, hyperparameters and details of packages and 

versions used for modelling. 
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