655 research outputs found

    Stability of Boolean function classes with respect to clones of linear functions

    Get PDF
    We consider classes of Boolean functions stable under compositions both from the right and from the left with clones. Motivated by the question how many properties of Boolean functions can be defined by means of linear equations, we focus on stability under compositions with the clone of linear idempotent functions. It follows from a result by Sparks that there are countably many such linearly definable classes of Boolean functions. In this paper, we refine this result by completely describing these classes. This work is tightly related with the theory of function minors, stable classes, clonoids, and hereditary classes, topics that have been widely investigated in recent years by several authors including Maurice Pouzet and his coauthors.Comment: 44 page

    Stability of Boolean function classes with respect to clones of linear functions

    Get PDF
    We consider classes of Boolean functions stable under compositions both from the right and from the left with clones. Motivated by the question how many properties of Boolean functions can be defined by means of linear equations, we focus on stability under compositions with the clone of linear idempotent functions. It follows from a result by Sparks that there are countably many such linearly definable classes of Boolean functions. In this paper, we refine this result by completely describing these classes. This work is tightly related with the theory of function minors, stable classes, clonoids, and hereditary classes, topics that have been widely investigated in recent years by several authors including Maurice Pouzet and his coauthors

    Function classes and relational constraints stable under compositions with clones

    Full text link
    The general Galois theory for functions and relational constraints over arbitrary sets described in the authors' previous paper is refined by imposing algebraic conditions on relations

    Functional equations, constraints, definability of function classes, and functions of Boolean variables

    Get PDF
    The paper deals with classes of functions of several variables defined on an arbitrary set A and taking values in a possibly different set B. Definability of function classes by functional equations is shown to be equivalent to definability by relational constraints, generalizing a fact established by Pippenger in the case A = B = {0,1}. Conditions for a class of functions to be definable by constraints of a particular type are given in terms of stability under certain functional compositions. This leads to a correspondence between functional equations with particular algebraic syntax and relational constraints with certain invariance properties with respect to clones of operations on a given set. When A = {0,1} and B is a commutative ring, such B-valued functions of n variables are represented by multilinear polynomials in n indeterminates in B[X1,..., Xn], Functional equations are given to describe classes of field-valued functions of a specified bounded degree. Classes of Boolean and pseudo-Boolean functions are covered as particular cases

    The Complexity of Reasoning for Fragments of Autoepistemic Logic

    Get PDF
    Autoepistemic logic extends propositional logic by the modal operator L. A formula that is preceded by an L is said to be "believed". The logic was introduced by Moore 1985 for modeling an ideally rational agent's behavior and reasoning about his own beliefs. In this paper we analyze all Boolean fragments of autoepistemic logic with respect to the computational complexity of the three most common decision problems expansion existence, brave reasoning and cautious reasoning. As a second contribution we classify the computational complexity of counting the number of stable expansions of a given knowledge base. To the best of our knowledge this is the first paper analyzing the counting problem for autoepistemic logic

    Lectures on Designing Screening Experiments

    Full text link
    Designing Screening Experiments (DSE) is a class of information - theoretical models for multiple - access channels (MAC). We discuss the combinatorial model of DSE called a disjunct channel model. This model is the most important for applications and closely connected with the superimposed code concept. We give a detailed survey of lower and upper bounds on the rate of superimposed codes. The best known constructions of superimposed codes are considered in paper. We also discuss the development of these codes (non-adaptive pooling designs) intended for the clone - library screening problem. We obtain lower and upper bounds on the rate of binary codes for the combinatorial model of DSE called an adder channel model. We also consider the concept of universal decoding for the probabilistic DSE model called a symmetric model of DSE.Comment: 66 page

    A Near-Optimal Depth-Hierarchy Theorem for Small-Depth Multilinear Circuits

    Full text link
    We study the size blow-up that is necessary to convert an algebraic circuit of product-depth Δ+1\Delta+1 to one of product-depth Δ\Delta in the multilinear setting. We show that for every positive Δ=Δ(n)=o(logn/loglogn),\Delta = \Delta(n) = o(\log n/\log \log n), there is an explicit multilinear polynomial P(Δ)P^{(\Delta)} on nn variables that can be computed by a multilinear formula of product-depth Δ+1\Delta+1 and size O(n)O(n), but not by any multilinear circuit of product-depth Δ\Delta and size less than exp(nΩ(1/Δ))\exp(n^{\Omega(1/\Delta)}). This result is tight up to the constant implicit in the double exponent for all Δ=o(logn/loglogn).\Delta = o(\log n/\log \log n). This strengthens a result of Raz and Yehudayoff (Computational Complexity 2009) who prove a quasipolynomial separation for constant-depth multilinear circuits, and a result of Kayal, Nair and Saha (STACS 2016) who give an exponential separation in the case Δ=1.\Delta = 1. Our separating examples may be viewed as algebraic analogues of variants of the Graph Reachability problem studied by Chen, Oliveira, Servedio and Tan (STOC 2016), who used them to prove lower bounds for constant-depth Boolean circuits

    Generalized Satisfiability Problems via Operator Assignments

    Full text link
    Schaefer introduced a framework for generalized satisfiability problems on the Boolean domain and characterized the computational complexity of such problems. We investigate an algebraization of Schaefer's framework in which the Fourier transform is used to represent constraints by multilinear polynomials in a unique way. The polynomial representation of constraints gives rise to a relaxation of the notion of satisfiability in which the values to variables are linear operators on some Hilbert space. For the case of constraints given by a system of linear equations over the two-element field, this relaxation has received considerable attention in the foundations of quantum mechanics, where such constructions as the Mermin-Peres magic square show that there are systems that have no solutions in the Boolean domain, but have solutions via operator assignments on some finite-dimensional Hilbert space. We obtain a complete characterization of the classes of Boolean relations for which there is a gap between satisfiability in the Boolean domain and the relaxation of satisfiability via operator assignments. To establish our main result, we adapt the notion of primitive-positive definability (pp-definability) to our setting, a notion that has been used extensively in the study of constraint satisfaction problems. Here, we show that pp-definability gives rise to gadget reductions that preserve satisfiability gaps. We also present several additional applications of this method. In particular and perhaps surprisingly, we show that the relaxed notion of pp-definability in which the quantified variables are allowed to range over operator assignments gives no additional expressive power in defining Boolean relations
    corecore