Autoepistemic logic extends propositional logic by the modal operator L. A
formula that is preceded by an L is said to be "believed". The logic was
introduced by Moore 1985 for modeling an ideally rational agent's behavior and
reasoning about his own beliefs. In this paper we analyze all Boolean fragments
of autoepistemic logic with respect to the computational complexity of the
three most common decision problems expansion existence, brave reasoning and
cautious reasoning. As a second contribution we classify the computational
complexity of counting the number of stable expansions of a given knowledge
base. To the best of our knowledge this is the first paper analyzing the
counting problem for autoepistemic logic