61,487 research outputs found

    IC-Cut: A Compositional Search Strategy for Dynamic Test Generation

    Get PDF
    Abstract. We present IC-Cut, short for “Interface-Complexity-based Cut”, a new compositional search strategy for systematically testing large programs. IC-Cut dynamically detects function interfaces that are simple enough to be cost-effective for summarization. IC-Cut then hierarchically decomposes the program into units defined by such functions and their sub-functions in the call graph. These units are tested independently, their test results are recorded as low-complexity function summaries, and the summaries are reused when testing higher-level functions in the call graph, thus limiting overall path explosion. When the decomposed units are tested exhaustively, they constitute verified components of the program. IC-Cut is run dynamically and on-the-fly during the search, typically refining cuts as the search advances. We have implemented this algorithm as a new search strategy in the whitebox fuzzer SAGE, and present detailed experimental results ob-tained when fuzzing the ANI Windows image parser. Our results show that IC-Cut alleviates path explosion while preserving or even increasing code coverage and bug finding, compared to the current generational-search strategy used in SAGE.

    Dynamic MOdularized Reasoning for Compositional Structured Explanation Generation

    Full text link
    Despite the success of neural models in solving reasoning tasks, their compositional generalization capabilities remain unclear. In this work, we propose a new setting of the structured explanation generation task to facilitate compositional reasoning research. Previous works found that symbolic methods achieve superior compositionality by using pre-defined inference rules for iterative reasoning. But these approaches rely on brittle symbolic transfers and are restricted to well-defined tasks. Hence, we propose a dynamic modularized reasoning model, MORSE, to improve the compositional generalization of neural models. MORSE factorizes the inference process into a combination of modules, where each module represents a functional unit. Specifically, we adopt modularized self-attention to dynamically select and route inputs to dedicated heads, which specializes them to specific functions. We conduct experiments for increasing lengths and shapes of reasoning trees on two benchmarks to test MORSE's compositional generalization abilities, and find it outperforms competitive baselines. Model ablation and deeper analyses show the effectiveness of dynamic reasoning modules and their generalization abilities

    Dynamic Compositional Neural Networks over Tree Structure

    Full text link
    Tree-structured neural networks have proven to be effective in learning semantic representations by exploiting syntactic information. In spite of their success, most existing models suffer from the underfitting problem: they recursively use the same shared compositional function throughout the whole compositional process and lack expressive power due to inability to capture the richness of compositionality. In this paper, we address this issue by introducing the dynamic compositional neural networks over tree structure (DC-TreeNN), in which the compositional function is dynamically generated by a meta network. The role of meta-network is to capture the metaknowledge across the different compositional rules and formulate them. Experimental results on two typical tasks show the effectiveness of the proposed models.Comment: Accepted by IJCAI 201

    Speech vocoding for laboratory phonology

    Get PDF
    Using phonological speech vocoding, we propose a platform for exploring relations between phonology and speech processing, and in broader terms, for exploring relations between the abstract and physical structures of a speech signal. Our goal is to make a step towards bridging phonology and speech processing and to contribute to the program of Laboratory Phonology. We show three application examples for laboratory phonology: compositional phonological speech modelling, a comparison of phonological systems and an experimental phonological parametric text-to-speech (TTS) system. The featural representations of the following three phonological systems are considered in this work: (i) Government Phonology (GP), (ii) the Sound Pattern of English (SPE), and (iii) the extended SPE (eSPE). Comparing GP- and eSPE-based vocoded speech, we conclude that the latter achieves slightly better results than the former. However, GP - the most compact phonological speech representation - performs comparably to the systems with a higher number of phonological features. The parametric TTS based on phonological speech representation, and trained from an unlabelled audiobook in an unsupervised manner, achieves intelligibility of 85% of the state-of-the-art parametric speech synthesis. We envision that the presented approach paves the way for researchers in both fields to form meaningful hypotheses that are explicitly testable using the concepts developed and exemplified in this paper. On the one hand, laboratory phonologists might test the applied concepts of their theoretical models, and on the other hand, the speech processing community may utilize the concepts developed for the theoretical phonological models for improvements of the current state-of-the-art applications

    Visual Question Answering: A Survey of Methods and Datasets

    Full text link
    Visual Question Answering (VQA) is a challenging task that has received increasing attention from both the computer vision and the natural language processing communities. Given an image and a question in natural language, it requires reasoning over visual elements of the image and general knowledge to infer the correct answer. In the first part of this survey, we examine the state of the art by comparing modern approaches to the problem. We classify methods by their mechanism to connect the visual and textual modalities. In particular, we examine the common approach of combining convolutional and recurrent neural networks to map images and questions to a common feature space. We also discuss memory-augmented and modular architectures that interface with structured knowledge bases. In the second part of this survey, we review the datasets available for training and evaluating VQA systems. The various datatsets contain questions at different levels of complexity, which require different capabilities and types of reasoning. We examine in depth the question/answer pairs from the Visual Genome project, and evaluate the relevance of the structured annotations of images with scene graphs for VQA. Finally, we discuss promising future directions for the field, in particular the connection to structured knowledge bases and the use of natural language processing models.Comment: 25 page
    • …
    corecore