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Abstract. We present IC-Cut, short for “Interface-Complexity-based
Cut”, a new compositional search strategy for systematically testing large
programs. IC-Cut dynamically detects function interfaces that are simple
enough to be cost-effective for summarization. IC-Cut then hierarchically
decomposes the program into units defined by such functions and their
sub-functions in the call graph. These units are tested independently,
their test results are recorded as low-complexity function summaries,
and the summaries are reused when testing higher-level functions in the
call graph, thus limiting overall path explosion. When the decomposed
units are tested exhaustively, they constitute verified components of the
program. IC-Cut is run dynamically and on-the-fly during the search,
typically refining cuts as the search advances.
We have implemented this algorithm as a new search strategy in the
whitebox fuzzer SAGE, and present detailed experimental results ob-
tained when fuzzing the ANI Windows image parser. Our results show
that IC-Cut alleviates path explosion while preserving or even increasing
code coverage and bug finding, compared to the current generational-
search strategy used in SAGE.

1 Introduction

Systematic dynamic test generation [14, 7] consists of symbolically executing a
program dynamically, while collecting constraints on inputs from branch state-
ments along the execution. These constraints are systematically negated and
solved with a constraint solver to infer variants of the previous inputs, which
will exercise alternative execution paths of the program. The process is system-
atically repeated with the goal of exploring the entire set (in practice, a subset) of
all feasible execution paths of the program. This approach to automatic test case
generation has been implemented in many popular tools over the last decade,
such as EXE [8], jCUTE [21], Pex [23], KLEE [6], BitBlaze [22], and Apollo [2], to
name a few. Although effective in detecting bugs, these testing tools have never

⋆ The work of this author was mostly done while visiting Microsoft Research.
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been pushed toward program verification of a large and complex application,
i.e., toward proving that the application is free of certain classes of errors.

We have recently used the whitebox fuzzer SAGE [16] to show how system-
atic dynamic test generation can be extended toward program verification of the
ANI Windows image parser [10]. In this previous work, we limit path explosion
in the parser with user-guided program decomposition and summarization [12,
1]. In particular, we manually identify functions for summarization whose in-
put/output interfaces with respect to higher-level functions in the call graph are
not too complex, so that the logic encoding of their summaries remains simple.
Indeed, we find that it is common for functions to return a single “success” or
“failure” value. If “failure” is returned, the higher-level function typically termi-
nates. If “success” is returned, parsing proceeds with new chunks of the input,
that is, completely independently of the specific path taken in the function be-
ing summarized. We, therefore, decompose the program at very few interfaces,
of functions that parse independent chunks of the input and return a single
“success” or “failure” value.

Based on these previous insights, we now define a new compositional search
strategy for automatically and dynamically discovering simple function inter-
faces, where large programs can be effectively decomposed. IC-Cut, short for
“Interface-Complexity-based Cut”, tests the decomposed program units inde-
pendently, records their test results as low-complexity function summaries (that
is, summaries with simple logic encoding), and reuses these summaries when
testing higher-level functions in the call graph, thus limiting overall path explo-
sion. IC-Cut runs on-the-fly during the search to incrementally refine interface
cuts as the search advances. In short, IC-Cut is inspired by compositional rea-
soning, but is only a search strategy, based on heuristics, for decomposing the
program into independent units that process different chunks of the input. We,
therefore, do not perform compositional verification in this work, except when
certain particular restrictions are met (see Sects. 3.4 and 4).

The main contributions of this paper are:

– We present an attractive and principled alternative to ad-hoc state-of-the-art
search heuristics for alleviating path explosion.

– As our experiments show, IC-Cut preserves or even increases code cov-
erage and bug finding in significantly less time, compared to the current
generational-search strategy of SAGE.

– IC-Cut can identify which decomposed program units are exhaustively tested
and, thus, dynamically verified.

This paper is organized as follows. In Sect. 2, we recall basic principles of
systematic dynamic test generation and whitebox fuzzing, and give an overview
of the SAGE tool used in this work. Sect. 3 explains the IC-Cut search strategy
in detail. In Sect. 4, we present our experimental results obtained when fuzzing
the ANI Windows image parser. We review related work in Sect. 5 and conclude
in Sect. 6.
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2 Background

We consider a sequential deterministic program P, which is composed of a set
of functions and takes as input an input vector, that is, multiple input values.
The determinism of the program guarantees that running P with the same input
vector leads to the same program execution.

We can systematically explore the state space of program P using systematic
dynamic test generation [14, 7]. Systematic dynamic test generation consists of
repeatedly running a program both concretely and symbolically. The goal is
to collect symbolic constraints on inputs, from predicates in branch statements
along the execution, and then to infer variants of the previous inputs, using a
constraint solver, in order to steer the next execution of the program toward an
alternative program path.

Symbolic execution means executing a program with symbolic rather than
concrete values. A symbolic variable is, therefore, associated with each value in
the input vector, and every constraint is on such symbolic variables. Assignment
statements are represented as functions of their (symbolic) arguments, while
conditional statements are expressed as constraints on symbolic values. Side-
by-side concrete and symbolic executions are performed using a concrete store
M and a symbolic store S , which are mappings from memory addresses (where
program variables are stored) to concrete and symbolic values, respectively. For
a program path w, a path constraint φw is a logic formula that characterizes the
input values for which the program executes along w. Each symbolic variable
appearing in φw is, thus, a program input. Each constraint is expressed in some
theory3 T decided by a constraint solver, i.e., an automated theorem prover that
can return a satisfying assignment for all variables appearing in constraints it
proves satisfiable.

Whitebox fuzzing is an application of systematic dynamic test generation
for detecting security vulnerabilities. In particular, whitebox file fuzzing explores
programs that take as input a file, all bytes of which constitute the input vector of
the program. SAGE [16] is a whitebox file fuzzing tool for security testing, which
implements systematic dynamic test generation and performs dynamic symbolic
execution at the x86 binary level. It is optimized to scale to very large execution
traces (billions of x86 instructions) and programs (like Excel). Notably, SAGE
is credited to have found roughly one third of all the security bugs discovered
by file fuzzing during the development of Microsoft’s Windows 7 [5].

Obviously, testing and symbolically executing all feasible program paths is
not possible for large programs. Indeed, the number of feasible paths can be
exponential in the program size, or even infinite in the presence of loops with
an unbounded number of iterations. In practice, this path explosion is alleviated
using heuristics to maximize code coverage as quickly as possible and find bugs
faster in an incomplete search. For instance, SAGE uses a generational-search
strategy [16], where all constraints in a path constraint are negated one by one
(by the Z3 theorem prover [11]) in order to maximize the number of new tests

3 A theory is a set of logic formulas.



4 Maria Christakis and Patrice Godefroid

generated per symbolic execution. This search strategy is combined with simple
heuristics that guide the search toward least covered parts of the search space
and prune the search space using flip count limits and constraint subsumption
(see Sects. 3.3 and 4). Other related industrial-strength tools like Pex [23] use
similar techniques. In this paper, we explore a different approach to alleviate
path explosion.

3 The IC-Cut search strategy

In this section, we present the IC-Cut search algorithm, precisely define the low-
complexity function summaries of IC-Cut, and discuss its correctness guarantees
and limitations.

3.1 Algorithm

Alg. 1 presents the IC-Cut search strategy. IC-Cut consists of three phases, which
are overlapping: learning, decomposition, and matching.

Learning The learning phase of IC-Cut runs the program under test on a set
of seed inputs. The goal is to learn as much of the call graph of the program. As
a result, the larger this set, the more detailed is the global view that IC-Cut has
of the program, and the fewer new functions are discovered in the next phase.

On line 2 of Alg. 1, function CreateCallgraph returns the call graph
of the program that is learned, dynamically and incrementally, by running the
program on the seed inputs. Each node in the call graph represents a function
of the program, and contains the function name and one seed input that steers
execution of the program through this function. Each edge (f , g) in the call graph
denotes that function f calls function g. Note that we assume no recursion.

Handling recursion is conceptually possible [12]. In practice, it is not required
for the application domain of binary image parsers. Recursion in such parsers is
very rare due to obvious performance, scalability, and reliability reasons, which
is why we do not address it in this work.

Decomposition During the decomposition phase, IC-Cut fuzzes (that is, ex-
plores using dynamic symbolic execution) one function at a time, starting at
the bottom of the learned call graph, and potentially records the function test
results as a low-complexity summary (that is, a summary with a simple logic
encoding, as defined in Sect. 3.2). This is done in function Explore of Alg. 1,
which is called on line 4 and takes as arguments the call graph cg, the program
under test p, and an empty map from call-graph nodes to function summaries
summaries.

In particular, IC-Cut selects a function from the bottom of the call graph
that has not been previously fuzzed. This is shown on line 7 of Alg. 1, in func-
tion Explore, where we create a workQueue of the call graph leaf-nodes, and
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Alg. 1 The IC-Cut search algorithm.

1 function IC-Cut(p, seeds)
2 cg ← CreateCallgraph(p, seeds)
3 summaries ← {}
4 Explore(cg, p, summaries)

5

6 function Explore(cg, p, summaries)
7 workQueue ← GetLeaves(cg)
8 while IsNotEmpty(workQueue) do
9 f ← Peek(workQueue)

10 cg′, summaries ← Process(f , p, summaries)
11 if cg′ == cg then
12 workQueue ← Dequeue(workQueue)
13 predecessors ← GetPredecessors(f , cg)
14 workQueue ← Enqueue(predecessors, workQueue)
15 else
16 newFunctions ← GetNewFunctions(cg, cg′)
17 workQueue ← AddFirst(newFunctions, workQueue)
18 cg ← cg′

19

20 function Process(f , p, summaries)
21 seed ← GetSeed(f )
22 interface, cg′

← Fuzz(f , p, seed, summaries)
23 if IsSummarizable(interface) then
24 summary ← GenerateSummary(interface)
25 summaries ← PutSummary(f , summary, summaries)

26 return cg′, summaries

on line 9, where a function f is selected from the front of the workQueue. The se-
lected function is then tested independently (in function Process) to determine
whether its interface is simple enough to be cost-effective for summarization. To
test the selected function, IC-Cut chooses an appropriate seed input, which in
the previous phase has been found to steer execution of the program through
this function (line 21 of Alg. 1). Subsequently, on line 22, IC-Cut fuzzes the
program starting with this seed input, using dynamic symbolic execution.

However, while fuzzing the program, not all symbolic constraints that IC-Cut
collects may be negated; we call the constraints that may be negated open, and
all others closed. Specifically, the constraints that are collected until execution
encounters the first call to the selected function are closed. Once the function is
called, the constraints that are collected until the function returns are open. As
soon as the function returns, symbolic execution terminates. This means that
IC-Cut fuzzes only the selected function and for a single calling context of the
program. Note that the function is fuzzed using a generational search.

While fuzzing the selected function, IC-Cut dynamically determines the com-
plexity of its interface, as defined in Sect. 3.2. If the function interface is simple
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enough to be cost-effective for summarization (line 23 of Alg. 1), the test results
of the function are recorded as a summary. On line 24, we generate the function
summary, and on line 25, we add it to the summaries map. Note that function
Process describes our algorithm in a simplified way. If a function interface is
found to be suitable for summarization, IC-Cut actually records the summary
while fuzzing the function. If this is not the case, IC-Cut aborts fuzzing of this
function. How summaries are generated is precisely documented in Sect. 3.2.

It is possible that new functions are discovered during fuzzing of the selected
function, i.e., functions that do not appear in the call graph of the learning
phase. When this happens, IC-Cut updates the call graph. Of course, these new
functions are placed lower in the call graph than the currently-fuzzed function,
which is their (direct or indirect) caller. IC-Cut then selects a function to fuzz
from the bottom of the updated call graph.

This is shown on lines 11–18 of Alg. 1. If no new functions are discovered
during fuzzing of the selected function (line 11), we remove this function from
the workQueue, and add its predecessors in the call graph at the end of the
workQueue (lines 12–14). When IC-Cut explores these predecessors, their callees
will have already been fuzzed. If, however, new functions are discovered (lines 15–
16), we add these functions at the front of the workQueue (line 17), and update
the call graph (line 18). Note that when new functions are discovered, IC-Cut
aborts exploration of the currently-fuzzed function; this is why this function is
not removed from the workQueue on line 17.

The above process highlights the importance of the set of seed inputs in the
learning phase: the better this set is in call-graph coverage, the less time is spent
on switches between the decomposition and learning phases of IC-Cut.

Matching In general, summaries can be reused by callers to skip symbolic
execution of a summarized callee and, hence, alleviate path explosion caused by
inlining the callee, i.e., by re-exploring all callee paths.

The matching phase decides whether a recorded summary may be reused
when testing higher-level functions in the call graph. This is why function Fuzz

of Alg. 1 (line 22) takes the summaries map as argument. On the whole, Fuzz

explores (using dynamic symbolic execution) one function at a time, records its
interface, and reuses previously-computed summaries.

In our context, while fuzzing a higher-level function in the decomposition
phase, the exploration might come across a call to a function for which a sum-
mary has already been computed. Note, however, that this summary has been
computed for a particular calling context. Therefore, the matching phase deter-
mines whether the encountered calling context of the function matches (precisely
defined in Sect. 3.2) the old calling context for which the summary has been com-
puted. If this is the case, it is guaranteed that all execution paths of the function
for the encountered calling context are described by the recorded summary. Con-
sequently, the summary may be reused, since no execution paths of the function
will be missed. If, on the other hard, the calling contexts do not match, the
called function is fuzzed as part of the higher-level function (that is, it is inlined
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to the higher-level function) as if no summary had been recorded, to avoid miss-
ing execution paths or generating false alarms. In other words, IC-Cut allows
that a function is summarized only for a single calling context, and summary
reuse must be calling-context specific.

3.2 Function summaries

Before describing which constraints on interface complexity a function must
satisfy to be summarized, we first precisely define function inputs and outputs.

Function inputs and outputs

– An input if of function f is any value that is read and tested by f . In other
words, the value of if is not only read in f , but also affects which execution
path of the function is taken at runtime.

– An input if of f is symbolic if it is a function of any whole-program inputs;
otherwise, if is concrete.

– A candidate output cof of function f is any value that is written by f .
– An output of of function f is any candidate output of f that is tested later

in the program.

Consider program P below, which expects two non-negative inputs a and b:

int is_less (int x, int y) {

if (x < y)

return 1;

return 0;

}

void P(int a, int b) {

if ( is_less (a, 0) || is_less (b, 0))

error ();

...

}

For both calling contexts of function is less in program P, is less has one
symbolic input (that is, a or b), one concrete input (that is, 0), and one output
(which is 0 or 1 and tested by the if-statement in P).

Generating summaries In compositional symbolic execution [12, 1], a sum-
mary φf for a function f is defined as a logic formula over constraints expressed
in a theory T . Summary φf may be computed by symbolically executing all
paths of function f , generating an input precondition and output postcondition
for each path, and gathering all of these path summaries in a disjunction.

Precisely, φf is defined as a disjunction of formulas φwf
of the form

φwf
= prewf

∧ postwf
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where wf denotes an intra-procedural path in f , prewf
is a conjunction of con-

straints on the inputs of f , and postwf
a conjunction of constraints on the outputs

of f . For instance, a summary φf for function is less is

φf = (x < y ∧ ret = 1) ∨ (x ≥ y ∧ ret = 0)

where ret denotes the value returned by the function. This summary may be
reused across different calling contexts of is less. In practice, however, these
disjunctions of conjunctions of constraints can become very large and complex,
thus making summaries expensive to compute. For this reason, IC-Cut generates
only low-complexity function summaries for specific calling contexts.

For a given calling context, a function f is summarized by IC-Cut only if the
following two conditions are satisfied:

– All symbolic inputs of f are unconstrained, that is, they are completely
independent of the execution path taken in the program until function f
is called. In particular, the symbolic inputs of f do not appear in any of
the closed constraints collected before the call to f . Therefore, the input
precondition of f must be true.

– Function f has at most one output of .

If the above conditions are not satisfied, function f is inlined to its calling con-
texts (that is, not summarized). As an example, consider again program P. For
the first calling context of function is less in P (that is, is less(a, 0)), the
symbolic input of is less is unconstrained, and the function has exactly one
output. As a result, is less is summarized by IC-Cut for this first calling con-
text, as described in Sect. 3.1.

As a consequence of these conditions, the summaries considered in this work
have a single precondition on all symbolic inputs, which is true, and a single
precondition on all concrete inputs, which is of the form

∧

0≤j<N

ij = cj

where ij is a concrete input, cj a constant representing its concrete value, and
N the number of concrete inputs. Moreover, the summaries in this work have
no output postconditions, as explained later in this section. As a result, when
IC-Cut generates a summary for a function f , it actually records a precondition
of the above form on all concrete inputs of f ; this precondition also represents
the current calling context of f . In this paper, we abuse terminology and call
such preconditions “summaries”, although we do not record any disjunctions
or postconditions. For example, in the program P above, IC-Cut generates the
following summary for the first calling context of function is less

y = 0

which denotes that all inputs of is less except for y are symbolic and uncon-
strained, and that y is a concrete input whose value is 0 in the particular calling
context. This summary indicates that function is less has been fuzzed for a
calling context in which x may take any value, while y must have the value 0.
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Reusing summaries While fuzzing a higher-level function in the decompo-
sition phase of IC-Cut, the exploration might come across a call to a function
for which a summary has already been generated. Then, the matching phase
determines if this summary may be reused by checking whether the new calling
context of the function matches, i.e., is equally or more specific than, the old
calling context for which the summary has been recorded (see Sect. 3.1).

– The new calling context is as specific as the old calling context only if (1) the
function inputs that are symbolic and unconstrained in the old calling con-
text are also symbolic and unconstrained in the new calling context, and
(2) all other function inputs are concrete and have the same values across
both calling contexts, except in the case of non-null pointers whose concrete
values may differ since dynamic memory allocation is nondeterministic (see
Sect. 3.4 for more details).

– The new calling context is more specific than the old calling context only
if (1) the function inputs that are concrete in the old calling context are
also concrete in the new calling context and have the same values (except in
the case of non-null pointers), and (2) one or more function inputs that are
symbolic and unconstrained in the old calling context are either symbolic
and constrained in the new calling context or they are concrete.

Recall that, in our previous example about program P, IC-Cut records a sum-
mary for the first calling context of function is less in P. This summary is then
reused in the second calling context of is less in P (that is, is less(b, 0)),
which is as specific as the first.

After having described when a recorded summary may be reused, we now
explain how this is done. When the matching phase of IC-Cut determines that
a function summary matches a calling context of the function, the following two
steps are performed:

1. The function is executed only concretely, and not symbolically, until it re-
turns.

2. The function candidate outputs are associated with fresh symbolic variables.

Step (1) is performed because all execution paths of the function have already
been explored when testing this function independently for an equally or more
general calling context. Step (2) is used to determine whether the function has
at most one output, as follows.

When testing a function f for a given calling context, we can determine all
values that are written by f , which we call candidate outputs. Yet, we do not
know whether these candidate outputs are tested later in the program, which
would make them outputs of f . Therefore, when reusing a summary of f , we
associate fresh symbolic variables with all of its candidate outputs. We expect
that at most one of these candidate outputs is ever tested later in the program.
If this condition is not satisfied, the summary of f is invalidated. In this case,
the higher-level function that reused the summary of f is tested again, but this
time, f is inlined to its calling contexts instead of summarized.
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When reusing the summary of function is less in program P, we asso-
ciate a symbolic variable with the function’s only candidate output, its return
value. This symbolic variable is tested by function P, in the condition of the if-
statement, thus characterizing the return value of is less as a function output.

3.3 Input-dependent loops

We use constraint subsumption [16] to automatically detect and control input-
dependent loops. Subsumption keeps track of the constraints generated from a
given branch instruction. When a new constraint c is generated, SAGE uses a
fast syntactic check to determine whether c implies or is implied by a previous
constraint, generated from the same instruction during the execution, most likely
due to successive iterations of an input-dependent loop. If this is the case, the
weaker (implied) constraint is removed from the path constraint.

In combination with subsumption, which eliminates the weaker constraints
generated from the same branch, we can also use constraint skipping, which
never negates the remaining stronger constraints injected at this branch. When
constraint subsumption and skipping are both turned on, an input-dependent
loop is concretized, that is, it is explored only for a fixed number of iterations.

3.4 Correctness

We now discuss the correctness guarantees of the IC-Cut search strategy. The
following theorems hold assuming symbolic execution has perfect precision, i.e.,
that constraint generation and solving are sound and complete for all program
instructions.

We define an abort-statement in a program as any statement that triggers a
program error.

Theorem 1. (Soundness) Consider a program P. If IC-Cut reaches an abort,
then there is some input to P that leads to an abort.

Proof sketch. The proof is immediate by the soundness of dynamic symbolic
execution [14, 12]. In particular, it is required that the summaries of IC-Cut are
not over-approximated, but since these summaries are computed using dynamic
symbolic execution, this is guaranteed.

Theorem 2. (Completeness) Consider a program P. If IC-Cut terminates with-
out reaching an abort, no constraints are subsumed or skipped, and the functions
whose summaries are reused have no outputs and no concrete non-null pointers
as inputs, then there is no input to P that leads to an abort.

Proof sketch. The proof rests on the assumption that any potential source of
incompleteness in the IC-Cut summarization strategy is conservatively detected.
There are exactly two sources of incompleteness: (1) constraint subsumption and
skipping for automatically detecting and controlling input-dependent loops, and
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(2) reusing summaries of functions that have a single output and concrete non-
null pointers as inputs.

Constraint subsumption and skipping remove or ignore non-redundant con-
straints from the path constraint to detect and control successive iterations of
input-dependent loops. By removing or ignoring such constraints, these tech-
niques omit certain execution paths of the program, and are therefore incom-
plete.

When reusing the summary of a function with a single output, certain execu-
tion paths of the program might become infeasible due to the value of its output.
As a result, IC-Cut might fail to explore some execution paths. On the other
hand, summaries of functions with no outputs are completely independent of
the execution paths taken in the program. Therefore, when such summaries are
reused, no paths are ever missed. Note that by restricting the function outputs
to at most one, we set an upper bound to the number of execution paths that
can be missed, that is, in comparison to reusing summaries of functions with
more than one output.

When reusing the summary of a function that has concrete non-null point-
ers as inputs, execution paths that are guarded by tests on the values of these
pointers might be missed, for instance, when two such pointers are compared
for aliasing. This is because we ignore whether the values of such inputs actu-
ally match the calling context where the summary is reused, to deal with the
nondeterminism of dynamic memory allocation.

The program units for which the exploration of IC-Cut is complete and does
not lead to an abort are dynamically verified.

3.5 Limitation: Search redundancies

It is worth emphasizing that IC-Cut may perform redundant sub-searches in two
cases: (1) partial call graph, and (2) late summary mismatch, as detailed below.
However, as our evaluation shows (Sect. 4), these limitations seem outweighed
by the benefits of IC-Cut in practice.

Partial call graph This refers to discovering functions during the decomposi-
tion phase of IC-Cut that do not appear in the call graph built in the learning
phase. Whenever new functions are discovered, fuzzing is aborted in order to
update the call graph, and all test results of the function being fuzzed are lost.

Late summary mismatch Consider a scenario in which function foo calls
function bar. At time t, bar is summarized because it is call-stack deeper than
foo and the interface constraint on bar’s inputs is satisfied. At time t + i, foo

is explored while reusing the summary for bar, and bar’s candidate outputs are
associated with symbolic variables. At time t + i + j, while still exploring foo,
the interface constraint on bar’s outputs is violated, and thus, the summary of
bar is invalidated. Consequently, fuzzing of foo is aborted and restarted, this
time by inlining bar to its calling context in foo.
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4 Experimental evaluation

In this section, we present detailed experimental results obtained when fuzzing
the ANI Windows image parser, which is available on every version of Windows.

This parser processes structured graphics files to display “ANImated” cursors
and icons, like the spinning ring or hourglass on Windows. The ANI parser is
written mostly in C, while the remaining code is written in x86 assembly. It is a
large benchmark consisting of thousands of lines of code spread across hundreds
of functions. The implementation involves at least 350 functions defined in five
Windows DLLs. The parsing of input bytes from an ANI file takes place in
at least 110 functions defined in two DLLs, namely, in user32.dll, which is
responsible for 80% of the parsing code, and in gdi32.dll, which is responsible
for the remaining 20% [10].

Our results show that IC-Cut alleviates path explosion in this parser while
preserving or even increasing code coverage and bug finding, compared to the
current generational-search strategy used in SAGE. Note that by “generational-
search strategy used in SAGE”, we mean a monolithic search in the state space
of the entire program.

For our experiments, we used five different configurations of IC-Cut, which we
compared to the generational-search strategy that is implemented in SAGE. All
configurations are shown in Tab. 1. For each configuration, the first column of the
table shows its identifier and whether it uses IC-Cut. Note that configurations A–
E use IC-Cut, while F uses the generational-search strategy of SAGE. The second
column shows the maximum runtime for each configuration: configurations A–E
allow for a maximum of three hours to explore each function of the parser (since
the exploration is per function), while F allows for a total of 48 hours to explore
the entire parser (since the exploration is whole program). The four rightmost
columns of the table indicate whether the following options are turned on:

– Summarization at maximum runtime: Records a summary for the currently-
fuzzed function when the maximum runtime is exceeded if no conditions on
the function’s interface complexity have been violated;

Configuration Maximum Summarization Constraint Constraint Flip
runtime at maximum subsumption skipping count

ID IC-Cut runtime limit

A X 3h/function X X

B X 3h/function X X X

C X 3h/function X X X

D X 3h/function X

E X 3h/function X X

F 48h X X

Tab. 1: All configurations used in our experiments; we used five different
configurations of IC-Cut (A–E), which we compared to the generational-
search strategy of SAGE (F).
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Fig. 1: The instructions of the ANI parser that are covered by each config-
uration. The projected instruction coverage is critical for bug finding.

– Constraint subsumption: Eliminates weaker constraints implied by stronger
constraints generated from the same branch instruction, most likely due to
successive iterations of an input-dependent loop (see Sect. 3.3);

– Constraint skipping: Does not negate stronger constraints that imply weaker
constraints generated from the same branch instruction (see Sect. 3.3);

– Flip count limit: Establishes the maximum number of times that a constraint
generated from a particular program instruction may be negated [16].

Note that F is the configuration of SAGE that is currently used in production.

Fig. 1 shows the instructions of the ANI parser that are covered by each
configuration. We partition the covered instructions in those that are found
in user32.dll and gdi32.dll (projected coverage), and those that are found
in the other three DLLs (remaining coverage). Note that the instructions in
user32.dll and gdi32.dll are responsible for parsing untrusted bytes and are,
therefore, critical for bug finding. As shown in Fig. 1, configuration E, for which
options “summarization at maximum runtime” and “constraint subsumption”
are turned on, achieves the highest projected coverage. Configuration D, for
which only “constraint subsumption” is turned on, achieves a slightly lower cov-
erage. This suggests that summarizing when the maximum runtime is exceeded
helps in guiding the search toward new program instructions; in particular, it
avoids repeatedly exploring the code of the summarized functions. In contrast,
configurations A–C, for which “constraint skipping” is turned on, achieve the
lowest projected coverage. This indicates that testing input-dependent loops for
more than just a single number of iterations is critical in increasing coverage.

Fig. 2 shows the time (in minutes) it takes for each configuration to stop ex-
ploring the ANI parser. Note that configuration B stops in the smallest amount of
time (approximately 15 hours); this is because too many constraints are pruned
due to options “constraint subsumption”, “constraint skipping”, and “flip count
limit”, which are turned on. D achieves almost the same projected coverage as
F (Fig. 1) in much less time, indicating that ad-hoc heuristics such as flip count
limits are no longer necessary with IC-Cut. Configuration E, which achieves the
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Fig. 2: The time it takes for each configuration to stop exploring the ANI
parser.

highest projected coverage, stops exploring the parser in the second smallest
amount of time, that is, in approximately 21.5 hours—roughly 55% faster than
the generational-search strategy used in production (configuration F).

In this amount of time, configuration E also detects the largest number of
unique first-chance exceptions in the ANI parser. This is shown in Fig. 3, which
presents how many unique exceptions are detected by each configuration. A
first-chance exception is an exception (similar to an assertion violation) thrown
at runtime (by the operating system) during program execution, but caught
by the program using a C/C++ try/catch-mechanism (see [10]). Note that the
nine exceptions found by configuration E are a superset of all other exceptions
detected by the remaining configurations.

In summary, configuration E detects more unique exceptions than all other
configurations combined. Compared to configuration F (generational search), E
finds more exceptions (Fig. 3) and achieves the same projected instruction cov-
erage (Fig. 1) in less than half the time (Fig. 2). E is the most effective config-
uration against path explosion.

Tab. 2 shows how the winner-configuration E performs when the maximum
runtime per function of the parser is one minute, 90 minutes, and three hours,
respectively. Performance is measured in terms of covered instructions, total ex-
ploration time of the parser, and detected first-chance exceptions. As shown in
the table, IC-Cut performs better than configuration F even for a maximum run-
time of 90 minutes per function: there is a noticeable improvement in projected
code coverage and bug finding, which is achieved in approximately eleven hours
(roughly 76% faster than configuration F). This is a strong indication of how
much the summarization strategy of IC-Cut can alleviate path explosion.
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Fig. 3: The number of unique exceptions that are detected by each config-
uration.
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Maximum Coverage Total time First-chance exceptions
runtime projected remaining (in minutes) unique duplicate

1 minute 5,421 36,250 23 0 0
90 minutes 7,896 37,183 683 8 7
3 hours 7,894 37,146 1292 9 10

Tab. 2: Performance of the winner-configuration E when the maximum run-
time per function of the parser is one minute, 90 minutes, and three hours,
respectively. Performance is measured in terms of covered instructions, to-
tal exploration time of the parser, and detected first-chance exceptions.

Fig. 4 shows the number of functions that are explored by the winner-
configuration E when the maximum runtime per function of the parser is one
minute, 90 minutes, and three hours, respectively. This figure shows only func-
tions for which SAGE generated symbolic constraints. The functions are grouped
as follows: exhaustively tested and summarized, summarized despite constraint
subsumption or an exceeded runtime, not summarized because of multiple out-
puts or constrained symbolic inputs. The functions in the first group constitute
verified program components (according to Thm. 2), highlighting a key origi-
nality of IC-Cut, namely, that it can dynamically verify sub-parts of a program
during fuzzing. As expected, the larger the maximum runtime, the more func-
tions are discovered, the fewer functions are summarized at maximum runtime,
and the more functions are verified. Interestingly, the functions that are not
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Fig. 4: How many functions are explored by the winner-configuration E
when the maximum runtime per function of the parser is one minute, 90
minutes, and three hours, respectively. Only functions for which SAGE
generated symbolic constraints are shown.
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summarizable because of multiple outputs or constrained symbolic inputs are
identified immediately, even for a maximum runtime of one minute per function.

We also used IC-Cut to fuzz other image parsers, namely, GIF and JPEG.
Unfortunately, our prototype implementation could not handle the size of these
larger parsers. However, preliminary experiments showed that our restrictions for
summarization on function interfaces apply to both GIF and JPEG. For instance,
when running on GIF with a time-out of three hours per function, 16 out of 140
functions (with symbolic constraints) were summarized. When running on JPEG
with the same time-out, 27 out of 204 functions were summarized.

5 Related work

Automatic program decomposition for effective systematic dynamic test gener-
ation [9] is not a new idea. Moreover, compositional symbolic execution [12, 1]
has already been shown to alleviate path explosion. However, when, where, and
how compositionality is most effective in practice is still an open problem.

Algorithms for automatic program summarization have been proposed be-
fore [12, 1, 18]. SMART [12] tests all program functions in isolation, encodes
their test results as summaries expressed using input preconditions and out-
put postconditions, and then reuses these summaries when testing higher-level
functions. Demand-driven compositional symbolic execution [1] generates par-
tial summaries that describe only a subset of all paths in a function and can be
expanded lazily. SMASH [18] computes both may and must information com-
positionally using both may and must summaries. IC-Cut is inspired by this
compositional reasoning and summarization although it does not generate full-
fledged function summaries. Instead, IC-Cut records a single precondition on
all concrete function inputs without disjunctions or postconditions. In contrast
to SMART, IC-Cut generates summaries only for functions with low interface
complexity. Similarly to demand-driven compositional symbolic execution, our
summaries are partial in that they describe a single calling context. Furthermore,
when testing a function in isolation, the closed symbolic constraints that IC-Cut
collects before the first call to the function are similar to the lazily-expanded
dangling nodes in the demand-driven approach.

Other closely related techniques [19, 3, 4, 20] can be considered as approxima-
tions of sub-program summarization. Dynamic state merging and veritesting [19,
3] merge sub-program searches, and RWset [4] prunes searches by dynamically
computing variable liveness. Information partitions [20] are used to identify “non-
interfering” input chunks such that symbolically solving for each chunk while
keeping all other chunks fixed to concrete values finds the same bugs as symbol-
ically solving for the entire input. Similarly to these techniques, our work also
approximates sub-program summarization. Moreover, IC-Cut is closely related
to reducing test inputs using information partitions. Both techniques exploit in-
dependence between different parts of the program input. However, IC-Cut does
not require that the input is initially partitioned, and avoids the overhead of
dynamically computing data and control dependencies between input chunks.
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Overall, our algorithm does not require any static analysis and uses very sim-
ple summaries, which are nevertheless sufficient to significantly alleviate path
explosion. As a result, it is easy to implement on top of existing dynamic test
generation tools. Our purely dynamic technique can also handle complicated ANI
code patterns, such as stack-modifying, compiler-injected code for structured ex-
ception handling, and stack-guard protection, which most static analyses cannot
handle. Furthermore, a static over-approximation of the call graph might result
in testing more functions than necessary and for more calling contexts. With an
over-approximation of function interfaces, we would summarize fewer functions,
given the restrictions we impose on function inputs and outputs, thus fighting
path explosion less effectively.

In addition to our low-complexity function summaries, SAGE implements
other specialized forms of summaries, which deal with floating-point computa-
tions [13], handle input-dependent loops [17], and can be statically validated
against code changes [15].

6 Concluding remarks

We have presented a new search strategy inspired by compositional reasoning at
simple function interfaces. However, we do not perform compositional verification
in this work, except when certain restrictions are met (Thm. 2 and Sect. 4).

IC-Cut uses heuristics about interface complexity to discover, dynamically
and incrementally, independent program units that process different chunks of
the input vector. Our search strategy is sound for bug finding, while limiting
path explosion in a more principled and effective manner than in the current
implementation of SAGE, with its simple, yet clever, search heuristics. Indeed,
compared to the generational-search strategy of SAGE, our experiments show
that IC-Cut preserves code coverage and increases bug finding in significantly
less exploration time.

IC-Cut generates low-complexity summaries for a single calling context of
functions with unconstrained symbolic inputs and at most one output. Our pre-
vious work on proving memory safety of the ANI Windows image parser [10]
shows that such simple interfaces exist in real, complex parsers, which is why
we chose the above definition. However, our definition could be relaxed to allow
for more than one calling context or function output, although our experiments
show that this definition is already sufficient for large improvements. We leave
this for future work. We also leave for future work determining how suitable such
a definition is for application domains other than that of binary image parsers.
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