3,847 research outputs found

    Possibilistic Information Flow Control for Workflow Management Systems

    Full text link
    In workflows and business processes, there are often security requirements on both the data, i.e. confidentiality and integrity, and the process, e.g. separation of duty. Graphical notations exist for specifying both workflows and associated security requirements. We present an approach for formally verifying that a workflow satisfies such security requirements. For this purpose, we define the semantics of a workflow as a state-event system and formalise security properties in a trace-based way, i.e. on an abstract level without depending on details of enforcement mechanisms such as Role-Based Access Control (RBAC). This formal model then allows us to build upon well-known verification techniques for information flow control. We describe how a compositional verification methodology for possibilistic information flow can be adapted to verify that a specification of a distributed workflow management system satisfies security requirements on both data and processes.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Reconciling a component and process view

    Full text link
    In many cases we need to represent on the same abstraction level not only system components but also processes within the system, and if for both representation different frameworks are used, the system model becomes hard to read and to understand. We suggest a solution how to cover this gap and to reconcile component and process views on system representation: a formal framework that gives the advantage of solving design problems for large-scale component systems.Comment: Preprint, 7th International Workshop on Modeling in Software Engineering (MiSE) at ICSE 201

    Issues about the Adoption of Formal Methods for Dependable Composition of Web Services

    Full text link
    Web Services provide interoperable mechanisms for describing, locating and invoking services over the Internet; composition further enables to build complex services out of simpler ones for complex B2B applications. While current studies on these topics are mostly focused - from the technical viewpoint - on standards and protocols, this paper investigates the adoption of formal methods, especially for composition. We logically classify and analyze three different (but interconnected) kinds of important issues towards this goal, namely foundations, verification and extensions. The aim of this work is to individuate the proper questions on the adoption of formal methods for dependable composition of Web Services, not necessarily to find the optimal answers. Nevertheless, we still try to propose some tentative answers based on our proposal for a composition calculus, which we hope can animate a proper discussion

    Rule-Level Verification of Business Process Transformations using CSP

    Get PDF
    Business Process Reengineering is one of the most widely adopted techniques to improve the efficiency of organisations. Transforming process models, we intend to change their semantics in certain predefined ways, making them more flexible, more restrictive, etc. To understand and control the semantic consequences of change we use CSP to capture the behaviour of processes before and after the transformation. Formalising process transformations by graph transformation rules, we are interested in verifying semantic properties of these transformations at the level of rules, so that every application of a rule has a known semantic effect. It turns out that we can do so if the mapping of activity diagrams models into the semantic domain CSP is compositional, i.e., compatible with the embedding of processes into larger contexts

    Verification of soundness and other properties of business processes

    Get PDF
    In this thesis we focus on improving current modeling and verification techniques for complex business processes. The objective of the thesis is to consider several aspects of real-life business processes and give specific solutions to cope with their complexity. In particular, we address verification of a proper termination property for workflows, called generalized soundness. We give a new decision procedure for generalized soundness that improves the original decision procedure. The new decision procedure reports on the decidability status of generalized soundness and returns a counterexample in case the workflow net is not generalized sound. We report on experimental results obtained with the prototype implementation we made and describe how to verify large workflows compositionally, using reduction rules. Next, we concentrate on modeling and verification of adaptive workflows — workflows that are able to change their structure at runtime, for instance when some exceptional events occur. In order to model the exception handling properly and allow structural changes of the system in a modular way, we introduce a new class of nets, called adaptive workflow nets. Adaptive workflow nets are a special type of Nets in Nets and they allow for creation, deletion and transformation of net tokens at runtime and for two types of synchronizations: synchronization on proper termination and synchronization on exception. We define some behavioral properties of adaptive workflow nets: soundness and circumspectness and employ an abstraction to reduce the verification of these properties to the verification of behavioral properties of a finite state abstraction. Further, we study how formal methods can help in understanding and designing business processes. We investigate this for the extended event-driven process chains (eEPCs), a popular industrial business process language used in the ARIS Toolset. Several semantics have been proposed for EPCs. However, most of them concentrated solely on the control flow. We argue that other aspects of business processes must also be taken into account in order to analyze eEPCs and propose a semantics that takes data and time information from eEPCs into account. Moreover, we provide a translation of eEPCs to Timed Colored Petri nets in order to facilitate verification of eEPCs. Finally, we discuss modeling issues for business processes whose behavior may depend on the previous behavior of the process, history which is recorded by workflow management systems as a log. To increase the precision of models with respect to modeling choices depending on the process history, we introduce history-dependent guards. The obtained business processes are called historydependent processes.We introduce a logic, called LogLogics for the specification of guards based on a log of a current running process and give an evaluation algorithm for such guards. Moreover, we show how these guards can be used in practice and define LogLogics patterns for properties that occur most commonly in practice

    Enabling security checking of automotive ECUs with formal CSP models

    Get PDF

    Reo + mCRL2: A Framework for Model-Checking Dataflow in Service Compositions

    Get PDF
    The paradigm of service-oriented computing revolutionized the field of software engineering. According to this paradigm, new systems are composed of existing stand-alone services to support complex cross-organizational business processes. Correct communication of these services is not possible without a proper coordination mechanism. The Reo coordination language is a channel-based modeling language that introduces various types of channels and their composition rules. By composing Reo channels, one can specify Reo connectors that realize arbitrary complex behavioral protocols. Several formalisms have been introduced to give semantics to Reo. In their most basic form, they reflect service synchronization and dataflow constraints imposed by connectors. To ensure that the composed system behaves as intended, we need a wide range of automated verification tools to assist service composition designers. In this paper, we present our framework for the verification of Reo using the mCRL2 toolset. We unify our previous work on mapping various semantic models for Reo, namely, constraint automata, timed constraint automata, coloring semantics and the newly developed action constraint automata, to the process algebraic specification language of mCRL2, address the correctness of this mapping, discuss tool support, and present a detailed example that illustrates the use of Reo empowered with mCRL2 for the analysis of dataflow in service-based process models
    • …
    corecore