18,507 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Security in heterogeneous wireless networks

    Get PDF
    The proliferation of a range of wireless devices, from the cheap low power resource starved sensor nodes to the ubiquitous cell phones and PDA\u27s has resulted in their use in many applications. Due to their inherent broadcast nature Security and Privacy in wireless networks is harder than the wired networks. Along with the traditional security requirements like confidentiality, integrity and non-repudiation new requirements like privacy and anonymity are important in wireless networks. These factors combined with the fact that nodes in a wireless network may have different resource availabilities and trust levels makes security in wireless networks extremely challenging. The functional lifetime of sensor networks in general is longer than the operational lifetime of a single node, due to limited battery power. Therefore to keep the network working multiple deployments of sensor nodes are needed. In this thesis, we analyze the vulnerability of the existing key predistribution schemes arising out of the repeated use of fixed key information through multiple deployments. We also develop SCON, an approach for key management that provides a significant improvement in security using multiple key pools. SCON performs better in a heterogeneous environment. We present a key distribution scheme that allows mobile sensor nodes to connect with stationary nodes of several networks. We develop a key distribution scheme for a semi ad-hoc network of cell phones. This scheme ensures that cell phones are able to communicate securely with each other when the phones are unable to connect to the base station. It is different from the traditional ad hoc networks because the phones were part of a centralized network before the base station ceased to work. This allows efficient distribution of key material making the existing schemes for ad hoc networks ineffective. In this thesis we present a mechanism for implementing authenticated broadcasts which ensure non-repudiation using identity based cryptography. We also develop a reputation based mechanism for the distributed detection and revocation of malicious cell phones. Schemes which use the cell phone for secure spatial authentication have also been presented

    ASMA: towards adaptive secured multipath in MANETs

    Get PDF
    As they are used to create open communities, Mobile Ad hoc NETworks (MANETs) are not favourable environments to establish trust, which is necessary to provide security. Multipath routing mechanisms within infrastructureless networks environment seems appropriate and useful to enhance security protection. In fact, the level of trust can be increased so as many of potential security attacks are detected, revealed and stopped. Nevertheless an excessive control overhead is always generated. In this paper, we propose a global framework that integrates a set of concepts and mechanisms aiming at enhancing security in highly dynamic decentralized ad hoc networks. Our solution focuses on authentication, routing securing, trust management with reliable estimation of trust. A large panoply of attacks are prevented using our various mechanisms.8th IFIP/IEEE International conference on Mobile and Wireless CommunicationRed de Universidades con Carreras en Informática (RedUNCI

    A Secure Key Management Model for Wireless Mesh Networks

    Get PDF
    As Wireless Mesh Networks (WMNs) are newly emerging wireless technologies, they are designed to have huge potential for strengthening Internet deployment and access. However, they are far from muture for large-scale deployment in some applications due to the lack of the satisfactory guarantees on security. The main challenges exposed to the security of WMNs come from the facts of the shared nature of the wireless architecture and the lack of globally trusted central authorities. A well-performed security framework for WMNs will contribute to network survivability and strongly support the network growth. A low-computational and scalable key management model for WMNs is proposed in this paper which aims to guarantee well-performed key management services and protection from potential attacks
    • …
    corecore