247,113 research outputs found

    Effects of deposition time and counter-electrode size on the fabrication of lscf-sdc carbonate composite cathode for sofc

    Get PDF
    The electrophoretic deposition (EPD) process has shown great potential in the development of cathodes for solid oxide fuel cell (SOFC). This study thus aimed to determine the feasibility of the electrophoretic deposition technique in producing composite cathode films. Two parameters were investigated, namely, the effects of counter electrode size and those of deposition time on the thickness and quality of an LSCF-SDC carbonate cathode composite deposited onto an SDC carbonate substrate. The effects of the changed parameters were observed by applying constant suspension pH and voltage. Five different deposition times ranging from 10 to 30 min were selected. The counter electrode sizes used were 25 × 25 mm2 and 50 × 50 mm2 . Then, the cathode composite films were sintered at 600°C for 90 min. Microstructural characterization and film thickness measurement were performed using a scanning electron microscope (SEM). The 50 × 50 mm2 counter electrode was found to produce a cathode composite film with higher thickness. The effects of the selected parameters (deposition time and counter electrode size) were also determined by analyzing the weight and thickness of the obtained LSCF-SDC carbonate films. The results showed that for the selected time interval, a film thickness of 4.6 to 30.8 ÎŒm is generated. Further studies on fabricating LSCF-SDC carbonate cathode composites by electrophoretic deposition present promising potential given that the film thickness obtained agree well with those derived in previous studies on various types of cathode materials

    Partial interlaminar separation system for composites

    Get PDF
    This inventor relates to an interlaminar separation system for composites wherein a thin layer of a perforated foil film is interposed between adjacent laminae of a composite formed from prepreg tapes to thereby permit laminate adherence through the perforations and produce a composite structure having improved physical property characteristics

    Electrochemical codeposition of nickel oxide and polyaniline

    Get PDF
    Nickel oxide (NiOx) and polyaniline (PAni) were electrocodeposited from NiSO4 and aniline through cyclic voltammetric scans to afford PAni–NiOx composite film at controlled pH environment. The electrochemical activities of the film were investigated by cyclic voltammetry in 0.1 M NaOH and 0.1 M H2SO4, respectively. Typical redox couples of PAni in 0.1 M H2SO4 appeared at approximately 0.2 and 0.4 V vs. saturated calomel electrode (SCE); Ni(II)/Ni(III) redox couple was observed at approximately 0.4 V vs. SCE in 0.1 M NaOH. The morphologies and elemental components of the films were inspected by scanning electron microscopy and energy dispersive X-ray diffraction. The stability of nickel oxide in the films was found to be enhanced against acidic environments. Electrochemical catalytic behavior of NiOx within the composite film was conserved and demonstrated by catalytic oxidation of methanol and ethanol

    An evaluation of boron-polymer film layer composites for high-performance structures

    Get PDF
    Fabricability, mechanical properties, and structural efficiency potentials of boron-polymer film layer composite

    Phase change composite bimorphs

    Full text link
    A bilayer composite thin-film beam structure is described. The structure incorporates a bulk phase change material as small inclusions in one layer of a bimorph. The structure, also referred to as a “phase change composite bimorph” or “PCBM”, curls abruptly, and reversibly, at a phase transition temperature. Large curling and effective expansion coefficients are demonstrated. The PCBMs may be employed in various self-assembly mechanisms and actuators.Published versio

    Fabrication of Three-Dimensional (3D) Copper/Carbon Nanotube Composite Film by One-Step Electrodeposition

    Get PDF
    A three-dimensional (3D) composite film containing copper nanostructures and carbon nanotubes (3DC/CNT composite film) was fabricated by one-step electrodeposition. The 3DC/CNT composite film was formed under galvanostatic conditions using a copper sulfate bath containing CNTs and polyacrylic acid which acts as both a 3DC-forming and a CNT-dispersing agent. The composite film consists of thin copper sheets with thicknesses of ca. 70-80 nm and CNTs, with large interior spaces between sheets. The CNTs were homogeneously distributed inside the composite film and were fixed by the copper sheets where CNTs pierce the copper sheets. The CNT content in the composite films increased with the CNT concentration of the plating bath. The 3DC film without CNTs did not maintain its 3D spaces when the film thickness was increased due to insufficient structural strength, whereas the 3DC/CNT composite film maintained the 3D spaces despite an increase in film thickness, which suggests that the CNTs reinforce the film to maintain the 3D spaces. (C) The Author(s) 2016. Published by ECS. All rights reserved.ArticleJOURNAL OF THE ELECTROCHEMICAL SOCIETY. 163(14):D774-D779 (2016)journal articl

    An investigation into the effect of thickness of titanium dioxide and gold-silver nanoparticle titanium dioxide composite thin-films on photocatalytic activity and photo-induced oxygen production in a sacrificial system

    Get PDF
    Thin films of titanium dioxide and titanium dioxide with incorporated gold and silver nanoparticles were deposited onto glass microscope slides, steel and titanium foil coupons by two sol–gel dip-coating methods. The film's photocatalytic activity and ability to evolve oxygen in a sacrificial solution were assessed. It was found that photocatalytic activity increased with film thickness (from 50 to 500 nm thick samples) for the photocatalytic degradation of methylene blue in solution and resazurin redox dye in an intelligent ink dye deposited on the surface. Contrastingly, an optimum film thickness of [similar]200 nm for both composite and pure films of titanium dioxide was found for water oxidation, using persulfate (S2O82−) as a sacrificial electron acceptor. The nanoparticle composite films showed significantly higher activity in oxygen evolution studies compared with plain TiO2 films

    Electrochemical deposition of Mg(OH)2/GO composite films for corrosion protection of magnesium alloys

    Get PDF
    AbstractMg(OH)2/graphene oxide (GO) composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential. The characteristics of the Mg(OH)2/GO composite film were investigated by scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffractometer (XRD) and Raman spectroscopy. It was shown that the flaky GO randomly distributed in the composite film. Compared with the Mg(OH)2 film, the Mg(OH)2/GO composite film exhibited more uniform and compact structure. Potentiodynamic polarization tests revealed that the Mg(OH)2/GO composite film could significantly improve the corrosion resistance of Mg(OH)2 film with an obvious positive shift of corrosion potential by 0.19 V and a dramatic reduction of corrosion current density by more than one order of magnitude
    • 

    corecore