307 research outputs found

    Acceleration Methods

    Full text link
    This monograph covers some recent advances in a range of acceleration techniques frequently used in convex optimization. We first use quadratic optimization problems to introduce two key families of methods, namely momentum and nested optimization schemes. They coincide in the quadratic case to form the Chebyshev method. We discuss momentum methods in detail, starting with the seminal work of Nesterov and structure convergence proofs using a few master templates, such as that for optimized gradient methods, which provide the key benefit of showing how momentum methods optimize convergence guarantees. We further cover proximal acceleration, at the heart of the Catalyst and Accelerated Hybrid Proximal Extragradient frameworks, using similar algorithmic patterns. Common acceleration techniques rely directly on the knowledge of some of the regularity parameters in the problem at hand. We conclude by discussing restart schemes, a set of simple techniques for reaching nearly optimal convergence rates while adapting to unobserved regularity parameters.Comment: Published in Foundation and Trends in Optimization (see https://www.nowpublishers.com/article/Details/OPT-036

    Optimal algorithms for smooth and strongly convex distributed optimization in networks

    Get PDF
    In this paper, we determine the optimal convergence rates for strongly convex and smooth distributed optimization in two settings: centralized and decentralized communications over a network. For centralized (i.e. master/slave) algorithms, we show that distributing Nesterov's accelerated gradient descent is optimal and achieves a precision Δ>0\varepsilon > 0 in time O(Îșg(1+Δτ)ln⁥(1/Δ))O(\sqrt{\kappa_g}(1+\Delta\tau)\ln(1/\varepsilon)), where Îșg\kappa_g is the condition number of the (global) function to optimize, Δ\Delta is the diameter of the network, and τ\tau (resp. 11) is the time needed to communicate values between two neighbors (resp. perform local computations). For decentralized algorithms based on gossip, we provide the first optimal algorithm, called the multi-step dual accelerated (MSDA) method, that achieves a precision Δ>0\varepsilon > 0 in time O(Îșl(1+Ï„Îł)ln⁥(1/Δ))O(\sqrt{\kappa_l}(1+\frac{\tau}{\sqrt{\gamma}})\ln(1/\varepsilon)), where Îșl\kappa_l is the condition number of the local functions and Îł\gamma is the (normalized) eigengap of the gossip matrix used for communication between nodes. We then verify the efficiency of MSDA against state-of-the-art methods for two problems: least-squares regression and classification by logistic regression

    Analyzing the effect of local rounding error propagation on the maximal attainable accuracy of the pipelined Conjugate Gradient method

    Get PDF
    Pipelined Krylov subspace methods typically offer improved strong scaling on parallel HPC hardware compared to standard Krylov subspace methods for large and sparse linear systems. In pipelined methods the traditional synchronization bottleneck is mitigated by overlapping time-consuming global communications with useful computations. However, to achieve this communication hiding strategy, pipelined methods introduce additional recurrence relations for a number of auxiliary variables that are required to update the approximate solution. This paper aims at studying the influence of local rounding errors that are introduced by the additional recurrences in the pipelined Conjugate Gradient method. Specifically, we analyze the impact of local round-off effects on the attainable accuracy of the pipelined CG algorithm and compare to the traditional CG method. Furthermore, we estimate the gap between the true residual and the recursively computed residual used in the algorithm. Based on this estimate we suggest an automated residual replacement strategy to reduce the loss of attainable accuracy on the final iterative solution. The resulting pipelined CG method with residual replacement improves the maximal attainable accuracy of pipelined CG, while maintaining the efficient parallel performance of the pipelined method. This conclusion is substantiated by numerical results for a variety of benchmark problems.Comment: 26 pages, 6 figures, 2 tables, 4 algorithm

    A fast high-order solver for problems of scattering by heterogeneous bodies

    Get PDF
    A new high-order integral algorithm for the solution of scattering problems by heterogeneous bodies is presented. Here, a scatterer is described by a (continuously or discontinuously) varying refractive index n(x) within a two-dimensional (2D) bounded region; solutions of the associated Helmholtz equation under given incident fields are then obtained by high-order inversion of the Lippmann-Schwinger integral equation. The algorithm runs in O(Nlog(N)) operations where N is the number of discretization points. A wide variety of numerical examples provided include applications to highly singular geometries, high-contrast configurations, as well as acoustically/electrically large problems for which supercomputing resources have been used recently. Our method provides highly accurate solutions for such problems on small desktop computers in CPU times of the order of seconds

    A review of nonlinear FFT-based computational homogenization methods

    Get PDF
    Since their inception, computational homogenization methods based on the fast Fourier transform (FFT) have grown in popularity, establishing themselves as a powerful tool applicable to complex, digitized microstructures. At the same time, the understanding of the underlying principles has grown, in terms of both discretization schemes and solution methods, leading to improvements of the original approach and extending the applications. This article provides a condensed overview of results scattered throughout the literature and guides the reader to the current state of the art in nonlinear computational homogenization methods using the fast Fourier transform
    • 

    corecore