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Abstract

In this paper, we determine the optimal convergence rates for strongly convex and smooth
distributed optimization in two settings: centralized and decentralized communications over a
network. For centralized (i.e. master/slave) algorithms, we show that distributing Nesterov’s
accelerated gradient descent is optimal and achieves a precision ε > 0 in time O(

√
κg(1 +

∆τ) ln(1/ε)), where κg is the condition number of the (global) function to optimize, ∆ is the
diameter of the network, and τ (resp. 1) is the time needed to communicate values between two
neighbors (resp. perform local computations). For decentralized algorithms based on gossip,
we provide the first optimal algorithm, called the multi-step dual accelerated (MSDA) method,
that achieves a precision ε > 0 in time O(

√
κl(1 + τ√

γ
) ln(1/ε)), where κl is the condition

number of the local functions and γ is the (normalized) eigengap of the gossip matrix used for
communication between nodes. We then verify the efficiency of MSDA against state-of-the-art
methods for two problems: least-squares regression and classification by logistic regression.

1 Introduction

Given the numerous applications of distributed optimization in machine learning, many algorithms
have recently emerged, that allow the minimization of objective functions f defined as the average
1
n

∑n
i=1 fi of functions fi which are respectively accessible by separate nodes in a network [1, 2, 3,

4]. These algorithms typically alternate local incremental improvement steps (such as gradient steps)
with communication steps between nodes in the network, and come with a variety of convergence
rates (see for example [5, 4, 6, 7]).

Two main regimes have been looked at: (a) centralized where communications are precisely sched-
uled and (b) decentralized where communications may not exhibit a precise schedule. In this paper,
we consider these two regimes for objective functions which are smooth and strongly-convex and
for which algorithms are linearly (exponentially) convergent. The main contribution of this paper
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is to propose new and matching upper and lower bounds of complexity for this class of distributed
problems.

The optimal complexity bounds depend on natural quantities in optimization and network theory.
Indeed, (a) for a single machine the optimal number of gradient steps to optimize a function is
proportional to the square root of the condition number [8], and (b) for mean estimation, the opti-
mal number of communication steps is proportional to the diameter of the network in centralized
problems or to the square root of the eigengap of the Laplacian matrix in decentralized problems
[9]. As shown in Section 3, our lower complexity bounds happen to be combinations of the two
contributions above.

These lower complexity bounds are attained by two separate algorithms. In the centralized case,
the trivial distribution of Nesterov’s accelerated gradient attains this rate, while in the decentralized
case, as shown in Section 4, the rate is achieved by a dual algorithm. We compare favorably our new
optimal algorithms to existing work in Section 5.

Related work. Decentralized optimization has been extensively studied and early methods such as
decentralized gradient descent [1, 10] or decentralized dual averaging [3] exhibited sublinear con-
vergence rates. More recently, a number of methods with provable linear convergence rates were
developed, including EXTRA [4, 11], augmented Lagrangians [6], and more recent approaches [7].
The most popular of such approaches is the distributed alternating direction method of multipliers
(D-ADMM) [2, 12, 5] and has led to a large number of variations and extensions. In a different
direction, second order methods were also investigated [13, 14]. However, to the best of our knowl-
edge, the field still lacks a coherent theoretical understanding of the optimal convergence rates and
its dependency on the characteristics of the communication network. In several related fields, com-
plexity lower bounds were recently investigated, including the sequential optimization of a sum of
functions [15, 16], distributed optimization in flat (i.e. totally connected) networks [17, 18], or
distributed stochastic optimization [19].

2 Distributed optimization setting

2.1 Optimization problem

Let G = (V, E) be a connected simple (i.e. undirected) graph of n computing units and diameter
∆, each having access to a function fi(θ) over θ ∈ Rd. We consider minimizing the average of the
local functions

min
θ∈Rd

f̄(θ) =
1

n

n∑
i=1

fi(θ) (1)

in a distributed setting. More specifically, we assume that:

1. Each computing unit can compute first-order characteristics, such as the gradient of its own
function or its Fenchel conjugate. By renormalization of the time axis, and without loss of
generality, we assume that this computation is performed in one unit of time.

2. Each computing unit can communicate values (i.e. vectors in Rd) to its neighbors. This com-
munication requires a time τ (which may be smaller or greater than 1).
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These actions may be performed asynchronously and in parallel, and each node i possesses a local
version of the parameter, which we refer to as θi. Moreover, we assume that each function fi is
α-strongly convex and β-smooth, and we denote by κl = β

α ≥ 1 the local condition number. We
also denote by αg , βg and κg , respectively, the strong convexity, smoothness and condition number
of the average (global) function f̄ . Note that we always have κg ≤ κl, while the opposite inequality
is, in general, not true (take for example f1(θ) = 1{θ < 0}θ2 and f2(θ) = 1{θ > 0}θ2 for which
κl = +∞ and κg = 1). However, the two quantities are close (resp. equal) when the local functions
are similar (resp. equal) to one another.

2.2 Decentralized communication

A large body of literature considers a decentralized approach to distributed optimization based on
the gossip algorithm [9, 1, 3, 12]. In such a case, communication is represented as a matrix multi-
plication with a matrix W verifying the following constraints:

1. W is an n× n symmetric matrix,

2. W is positive semi-definite,

3. The kernel of W is the set of constant vectors: Ker(W ) = Span(1), where 1 = (1, ..., 1)>,

4. W is defined on the edges of the network: Wij 6= 0 only if i = j or (i, j) ∈ E .

The third condition will ensure that the gossip step converges to the average of all the vectors shared
between the nodes. We will denote the matrix W as the gossip matrix, since each communication
step will be represented using it. Note that a simple choice for the gossip matrix is the Laplacian
matrix L = D − A, where A is the adjacency matrix of the network and D = diag

(∑
iAij

)
.

However, in the presence of large degree nodes, weighted Laplacian matrices are usually a better
choice, and the problem of optimizing these weights is known as the fastest distributed consensus
averaging problem and is investigated by [20, 21].

We will denote by λ1(W ) ≥ · · · ≥ λn(W ) = 0 the spectrum of the gossip matrix W , and its
(normalized) eigengap the ratio γ(W ) = λn−1(W )/λ1(W ) between the second smallest and the
largest eigenvalue. Equivalently, this is the inverse of the condition number of W projected on the
space orthogonal to the constant vector 1. This quantity will be the main parameter describing the
connectivity of the communication network in Section 3.3 and Section 4.

3 Optimal convergence rates

In this section, we prove oracle complexity lower bounds for distributed optimization in two set-
tings: strongly convex and smooth functions for centralized (i.e. master/slave) and decentralized
algorithms based on a gossip matrix W .

In the first setting, we show that distributing accelerated gradient descent matches the optimal con-
vergence rate, while, in the second setting, the algorithm proposed in Section 4 is shown to be
optimal. Note that we will use the notation g(ε) = Ω(f(ε)) for ∃C > 0 s.t. ∀ε > 0, g(ε) ≥ Cf(ε),
and will, for simplicity, omit the additive terms that do not depend on the precision ε in Corollary 1
and Corollary 2.
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3.1 Black-box optimization procedures

The lower bounds provided hereafter depend on a new notion of black-box optimization procedures
for the problem in Eq. (1), where we consider distributed algorithms verifying the following con-
straints:

1. Local memory: each node i can store past values in a (finite) internal memoryMi,t ⊂ Rd at
time t ≥ 0. These values can be accessed and used at time t by the algorithm run by node i,
and are updated either by local computation or by communication (defined below), that is, for
all i ∈ {1, ..., n},

Mi,t ⊂Mcomp
i,t ∪Mcomm

i,t . (2)

2. Local computation: each node i can, at time t, compute the gradient of its local function
∇fi(θ) or its Fenchel conjugate ∇f∗i (θ) for a value θ ∈ Mi,t in the node’s internal memory,
that is, for all i ∈ {1, ..., n},

Mcomp
i,t = Span ({θ,∇fi(θ),∇f∗i (θ) : θ ∈Mi,t−1}) . (3)

3. Local communication: each node i can, at time t, share a value to all or part of its neighbors,
that is, for all i ∈ {1, ..., n},

Mcomm
i,t = Span

( ⋃
(i,j)∈E

Mj,t−τ

)
. (4)

4. Output value: each node i must, at time t, specify one vector in its memory as local output
of the algorithm, that is, for all i ∈ {1, ..., n},

θi,t ∈Mi,t. (5)

Hence, a black-box procedure will return n output values—one for each node of the network—
and our analysis will focus on ensuring that all local output values are converging to the optimal
parameter of Eq. (1). Moreover, we will say that a black-box procedure uses a gossip matrix W if
the local communication is achieved by multiplication of a vector withW . For simplicity, we assume
that all nodes start with the simple internal memoryMi,0 = {0}. Note that communications and
local computations may be performed in parallel and asynchronously.

3.2 Centralized algorithms

In this section, we show that, for any black-box optimization procedure, at least Ω(
√
κg ln(1/ε)) gra-

dient steps and Ω(∆
√
κg ln(1/ε)) communication steps are necessary to achieve a precision ε > 0,

where κg is the global condition number and ∆ is the diameter of the network. These lower bounds
extend the communication complexity lower bounds for totally connected communication networks
of [18], and are natural since at least Ω(

√
κg ln(1/ε)) steps are necessary to solve a strongly convex

and smooth problem up to a fixed precision, and at least ∆ communication steps are required to
transmit a message between any given pair of nodes.

In order to simplify the proofs of the following theorems, and following the approach of [22], we
will consider the limiting situation d→ +∞. More specifically, we now assume that we are working
in `2 = {θ = (θk)k∈N :

∑
k θ

2
k < +∞} rather than Rd.
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Theorem 1. Let G be a graph of diameter ∆ > 0 and size n > 0, and βg ≥ αg > 0. There exists n
functions fi : `2 → R such that f̄ is αg strongly convex and βg smooth, and for any t ≥ 0 and any
black-box procedure one has, for all i ∈ {1, ..., n},

f̄(θi,t)− f̄(θ∗) ≥ αg
2

(
1− 4
√
κg

)1+ t
1+∆τ

‖θi,0 − θ∗‖2, (6)

where κg = βg/αg .

The proof of Theorem 1 relies on splitting the function used by Nesterov to prove oracle complexities
for strongly convex and smooth optimization [8, 22] on two nodes at distance ∆. One can show that
most dimensions of the parameters θi,t will remain zero, and local gradient computations may only
increase the number of non-zero dimensions by one. Finally, at least ∆ communication rounds are
necessary in-between every gradient computation, in order to share information between the two
nodes. The detailed proof is available as supplementary material.
Corollary 1. For any graph of diameter ∆ and any black-box procedure, there exists functions fi
such that the time to reach a precision ε > 0 is lower bounded by

Ω

(
√
κg

(
1 + ∆τ

)
ln

(
1

ε

))
, (7)

This optimal convergence rate is achieved by distributing Nesterov’s accelerated gradient descent
on the global function. Computing the gradient of f̄ is performed by sending all the local gradients
∇fi to a single node (denoted as master node) in ∆ communication steps (which may involve
several simultaneous messages), and then returning the new parameter θt+1 to every node in the
network (which requires another ∆ communication steps). In practice, summing the gradients can
be distributed by computing a spanning tree (with the root as master node), and asking for each node
to perform the sum of its children’s gradients before sending it to its parent. Standard methods as
described by [23] can be used for performing this parallelization of gradient computations.

This algorithm has three limitations: first, the algorithm is not robust to machine failures, and the
central role played by the master node also means that a failure of this particular machine may
completely freeze the procedure. Second, and more generally, the algorithm requires precomputing
a spanning tree, and is thus not suited to time-varying graphs, in which the connectivity between
the nodes may change through time (e.g. in peer-to-peer networks). Finally, the algorithm requires
every node to complete its gradient computation before aggregating them on the master node, and
the efficiency of the algorithm thus depends on the slowest of all machines. Hence, in the presence
of non-uniform latency of the local computations, or the slow down of a specific machine due to a
hardware failure, the algorithm will suffer a significant drop in performance.

3.3 Decentralized algorithms

The gossip algorithm [9] is a standard method for averaging values across a network when its con-
nectivity may vary through time. This approach was shown to be robust against machine failures,
non-uniform latencies and asynchronous or time-varying graphs, and a large body of literature ex-
tended this algorithm to distributed optimization [1, 3, 12, 4, 6, 7, 13].
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The convergence analysis of decentralized algorithms usually relies on the spectrum of the gossip
matrix W used for communicating values in the network, and more specifically on the ratio between
the second smallest and the largest eigenvalue of W , denoted γ. In this section, we show that, with
respect to this quantity and κl, reaching a precision ε requires at least Ω(

√
κl ln(1/ε)) gradient steps

and Ω
(√

κl
γ ln(1/ε)

)
communication steps, by exhibiting a gossip matrix such that a corresponding

lower bound exists.
Theorem 2. Let α, β > 0 and γ ∈ (0, 1]. There exists a gossip matrix W of eigengap γ(W ) = γ,
and α-strongly convex and β-smooth functions fi : `2 → R such that, for any t ≥ 0 and any
black-box procedure using W one has, for all i ∈ {1, ..., n},

f̄(θi,t)− f̄(θ∗) ≥ 3α

2

(
1− 16
√
κl

)1+ t
1+ τ

5
√
γ ‖θi,0 − θ∗‖2, (8)

where κl = β/α is the local condition number.

The proof of Theorem 2 relies on the same technique as that of Theorem 1, except that we now split
the two functions on a subset of a linear graph. These networks have the appreciable property that
∆ ≈ 1/

√
γ, and we can thus use a slightly extended version of Theorem 1 to derive the desired

result. The complete proof is available as supplementary material.
Corollary 2. For any γ > 0, there exists a gossip matrix W of eigengap γ and α-strongly convex,
β-smooth functions such that, with κl = β/α, for any black-box procedure using W the time to
reach a precision ε > 0 is lower bounded by

Ω

(
√
κl

(
1 +

τ
√
γ

)
ln

(
1

ε

))
. (9)

We will see in the next section that this lower bound is met for a novel decentralized algorithm
called multi-step dual accelerated (MSDA) and based on the dual formulation of the optimization
problem. Note that these results provide optimal convergence rates with respect to κl and γ, but do
not imply that γ is the right quantity to consider on general graphs. The quantity 1/

√
γ may indeed

be very large compared to ∆, for example for star networks, for which ∆ = 2 and 1/
√
γ =

√
n.

However, on many simple networks, the diameter ∆ and the eigengap of the Laplacian matrix are
tightly connected, and ∆ ≈ 1/

√
γ. For example, for linear graphs, ∆ = n− 1 and 1/

√
γ ≈ 2n/π,

for totally connected networks, ∆ = 1 and 1/
√
γ = 1, and for regular networks, 1/

√
γ ≥ ∆

2
√

2 ln2 n

[24]. Finally, note that the case of totally connected networks corresponds to a previous complexity
lower bound on communications proven by [18], and is equivalent to our result for centralized
algorithms with ∆ = 1.

4 Optimal decentralized algorithms

In this section, we present a simple framework for solving the optimization problem in Eq. (1) in a
decentralized setting, from which we will derive several variants, including a synchronized algorithm
whose convergence rate matches the lower bound in Corollary 2 . Note that the naive approach of
distributing each (accelerated) gradient step by gossiping does not lead to a linear convergence rate,
as the number of gossip steps has to increase with the number of iterations to ensure the linear rate is
preserved. We begin with the simplest form of the algorithm, before extending it to more advanced
scenarios.
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Algorithm 1 Single-Step Dual Accelerated method

Input: number of iterations T > 0, gossip matrix W ∈ Rn×n, η = α
λ1(W ) , µ =

√
κl−
√
γ√

κl+
√
γ

Output: θi,T , for i = 1, ..., n
1: x0 = 0, y0 = 0
2: for t = 0 to T − 1 do
3: θi,t = ∇f∗i (xi,t), for all i = 1, ..., n
4: yt+1 = xt − ηΘtW
5: xt+1 = (1 + µ)yt+1 − µyt
6: end for

4.1 Single-Step Dual Accelerated method

A standard approach for solving Eq. (1) (see [2, 6]) consists in rewriting the optimization problem
as

min
θ∈Rd

f̄(θ) = min
θ1=···=θn

1

n

n∑
i=1

fi(θi). (10)

Furthermore, the equality constraint θ1 = · · · = θn is equivalent to Θ
√
W = 0, where Θ =

(θ1, . . . , θn) and W is a gossip matrix verifying the assumptions described in Section 2. Note
that, since W is positive semi-definite,

√
W exists and is defined as

√
W = V >Σ1/2V , where

W = V >ΣV is the singular value decomposition of W . The equality Θ
√
W = 0 implies that each

row of Θ is constant (since Ker(
√
W ) = Span(1)), and is thus equivalent to θ1 = · · · = θn. This

leads to the following primal version of the optimization problem:

min
Θ∈Rd×n : Θ

√
W=0

F (Θ), (11)

where F (Θ) =
∑n
i=1 fi(θi). Since Eq. (11) is a convex problem, it is equivalent to its dual opti-

mization problem:
max

λ∈Rd×n
−F ∗(λ

√
W ), (12)

where F ∗(y) = supx∈Rd×n〈y, x〉 − F (x) is the Fenchel conjugate of F , and 〈y, x〉 = tr(y>x) is
the standard scalar product between matrices.

The optimization problem in Eq. (12) is unconstrained and convex, and can thus be solved using
a variety of convex optimization techniques. The proposed single-step dual accelerated (SSDA)
algorithm described in Alg. (1) uses Nesterov’s accelerated gradient descent, and can be thought of
as an accelerated version of the distributed augmented Lagrangian method of [6] for ρ = 0. The
algorithm is derived by noting that a gradient step of size η > 0 for Eq. (12) is

λt+1 = λt − η∇F ∗(λt
√
W )
√
W, (13)

and the change of variable yt = λt
√
W leads to

yt+1 = yt − η∇F ∗(yt)W. (14)

This equation can be interpreted as gossiping the gradients of the local conjugate functions∇f∗i (yi,t),
since ∇F ∗(yt)ij = ∇f∗j (yj,t)i.
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Theorem 3. The iterative scheme in Alg. (1) converges to Θ = θ∗1> where θ∗ is the solution of
Eq. (1). Furthermore, the time needed for this algorithm to reach any given precision ε > 0 is

O

(
(1 + τ)

√
κl
γ

ln

(
1

ε

))
. (15)

This theorem relies on proving that the condition number of the dual objective function is upper
bounded by κl

γ , and noting that the convergence rate for accelerated gradient descent depends on the
square root of the condition number (see, e.g., [22]). A detailed proof is available as supplementary
material.

4.2 Multi-Step Dual Accelerated method

The main problem of Alg. (1) is that it always performs the same number of gradient and gos-
sip steps. When communication is cheap compared to local computations (τ � 1), it would be
preferable to perform more gossip steps than gradient steps in order to propagate the local gradients
further than the local neighborhoods of each node. This can be achieved by replacingW by PK(W )
in Alg. (1), where PK is a polynomial of degree at most K. If PK(W ) is itself a gossip matrix,
then the analysis of the previous section can be applied and the convergence rate of the resulting
algorithm depends on the eigengap of PK(W ). Maximizing this quantity for a fixed K leads to a
common acceleration scheme known as Chebyshev acceleration [25, 26] and the choice

PK(x) = 1− TK(c2(1− x))

TK(c2)
, (16)

where c2 = 1+γ
1−γ and TK are the Chebyshev polynomials [25] defined as T0(x) = 1, T1(x) = x,

and, for all k ≥ 1,
Tk+1(x) = 2xTk(x)− Tk−1(x). (17)

Finally, verifying that this particular choice of PK(W ) is indeed a gossip matrix, and taking K =
b 1√

γ c leads to Alg. (2) with an optimal convergence rate with respect to γ and κl.

Theorem 4. The iterative scheme in Alg. (2) converges to Θ = θ∗1> where θ∗ is the solution of
Eq. (1). Furthermore, the time needed for this algorithm to reach any given precision ε > 0 is

O

(
√
κl

(
1 +

τ
√
γ

)
ln

(
1

ε

))
. (18)

The proof of Theorem 4 relies on standard properties of Chebyshev polynomials that imply that, for
the particular choice of K = b 1√

γ c, we have 1√
γ(PK(W ))

≤ 2. Hence, Theorem 3 applied to the

gossip matrix W ′ = PK(W ) gives the desired convergence rate. The complete proof is available as
supplementary material.

4.3 Discussion and further developments

We now discuss several extensions to the proposed algorithms.
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Algorithm 2 Multi-Step Dual Accelerated method

Input: number of iterations T > 0, gossip matrix W ∈ Rn×n, c1 =
1−√γ
1+
√
γ , c2 = 1+γ

1−γ , c3 =

2
(1+γ)λ1(W ) , K =

⌊
1√
γ

⌋
, η =

α(1+c2K1 )

(1+cK1 )2 , µ =
(1+cK1 )

√
κl−1+cK1

(1+cK1 )
√
κl+1−cK1

Output: θi,T , for i = 1, ..., n
1: x0 = 0, y0 = 0
2: for t = 0 to T − 1 do
3: θi,t = ∇f∗i (xi,t), for all i = 1, ..., n
4: yt+1 = xt − η ACCELERATEDGOSSIP(Θt,W ,K)
5: xt+1 = (1 + µ)yt+1 − µyt
6: end for

7: procedure ACCELERATEDGOSSIP(x,W ,K)
8: a0 = 1, a1 = c2
9: x0 = x, x1 = c2x(I − c3W )

10: for k = 1 to K − 1 do
11: ak+1 = 2c2ak − ak−1

12: xk+1 = 2c2xk(I − c3W )− xk−1

13: end for
14: return x0 − xK

aK
15: end procedure

1. Computation of∇f∗i (xi,t): In practice, it may be hard to apply the dual algorithm when con-
jugate functions are hard to compute. We now provide three potential solutions to this prob-
lem: (1) warm starts may be used for the optimization problem∇f∗i (xi,t) = argminθ fi(θ)−
x>i,tθ by starting from the previous iteration θi,t−1. This will drastically reduce the number of
steps required for convergence. (2) SSDA and MSDA can be extended to composite functions
of the form fi(θ) = gi(Biθ) + c‖θ‖22 for Bi ∈ Rmi×d and gi smooth, and for which we know
how to compute the proximal operator. This allows applications in machine learning such as
logistic regression. See supplementary material for details. (3) Beyond the composite case,
one can also add a small (well-chosen) quadratic term to the dual, and by applying accelerated
gradient descent on the corresponding primal, get an algorithm that uses primal gradient com-
putations and achieves almost the same guarantee as SSDA and MSDA (off by a log(κl/γ)
factor).

2. Local vs. global condition number: MSDA and SSDA depend on the worst strong convexity
of the local functions mini αi, which may be very small. A simple trick can be used to depend
on the average strong convexity. Using the proxy functions gi(θ) = fi(θ) − (αi − ᾱ)‖θ‖22
instead of fi, where ᾱ = 1

n

∑
i αi is the average strong convexity, will improve the local

condition number from κl = maxi βi
mini αi

to

κ′l =
maxi βi − αi

ᾱ
− 1. (19)

Several algorithms, including EXTRA [4] and DIGing [7], have convergence rates that depend
on the strong convexity of the global function αg . However, their convergence rates are not

optimal, and it is still an open question to know if a rate close to O
(√

κg(1 + τ√
γ ) ln(1/ε)

)
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can be achieved with a decentralized algorithm.

3. Asynchronous setting: Accelerated stochastic gradient descent such as SVRG [27] or SAGA
[28] can be used on the dual problem in Eq. (12) instead of accelerated gradient descent, in
order to obtain an asynchronous algorithm with a linear convergence rate. The details and
exact convergence rate of such an approach are left as future work.

5 Experiments

In this section, we compare our new algorithms, single-step dual accelerated (SSDA) descent and
multi-step dual accelerated (MSDA) descent, to standard distributed optimization algorithms in two
settings: least-squares regression and classification by logistic regression. Note that these experi-
ments on simple generated datasets are made to assess the differences between existing state-of-the-
art algorithms and the ones provided in Section 4, and do not address the practical implementation
details nor the efficiency of the compared algorithms on real-world distributed platforms. The effect
of latency, machine failures or variable communication time is thus left for future work.

5.1 Competitors and setup

We compare SSDA and MSDA to four state-of-the-art distributed algorithms that achieve linear con-
vergence rates: distributed ADMM (D-ADMM) [5], EXTRA [4], a recent approach named DIGing
[7], and the distributed version of accelerated gradient descent (DAGD) described in Section 3.2
and shown to be optimal among centralized algorithms. When available in the literature, we used
the optimal parameters for each algorithm (see Theorem 2 by [5] for D-ADMM and Remark 3 by
[4] for EXTRA). For the DIGing algorithm, the parameters provided by [7] are very conservative,
and lead to a very slow convergence. We thus manually optimized the parameter for this algorithm.
The experiments are simulated using a generated dataset consisting of 10, 000 samples randomly
distributed to the nodes of a network of size 100. In order to assess the effect of the connectivity of
the network, we ran each experiment on two networks: one 10×10 grid and an Erdös-Rényi random
network with parameter p = 6

100 (i.e. of average degree 6). The quality metric used in this section
is be the maximum approximation error among the nodes of the network

et = max
i∈V

f̄(θi,t)− f̄(θ∗), (20)

where θ∗ is the optimal parameter of the optimization problem in Eq. (1).

5.2 Least-squares regression

The regularized least-squares regression problem consists in solving the optimization problem

min
θ∈Rd

1

m
‖y −X>θ‖22 + c‖θ‖22, (21)

where X ∈ Rd×m is a matrix containing the m data points, and y ∈ Rm is a vector containing the
m associated values. The task is thus to minimize the empirical quadratic error between a function
yi = g(Xi) of d variables and its linear regression ĝ(Xi) = X>i θ on the original dataset (for
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(a) high communication time: τ = 10
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(b) low communication time: τ = 0.1

Figure 1: Maximum approximation error for least-squares regression on an Erdös-Rényi random
network of average degree 6 (n = 100).
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(a) high communication time: τ = 10
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(b) low communication time: τ = 0.1

Figure 2: Maximum approximation error for least-squares regression on a 10× 10 grid graph (n =
100).

i = 1, ...,m), while smoothing the resulting approximation by adding a regularizer c‖θ‖22. For
our experiments, we fixed c = 0.1, d = 10, and sampled m = 10, 000 Gaussian random variables
Xi ∼ N (0, 1) of mean 0 and variance 1. The function to regress is then yi = X>i 1+cos(X>i 1)+ξi
where ξi ∼ N (0, 1/4) is an i.i.d. Gaussian noise of variance 1/4. These data points are then
distributed randomly and evenly to the n = 100 nodes of the network. Note that the choice of
function to regress y does not impact the Hessian of the objective function, and thus the convergence
rate of the optimization algorithms.

Figure 1 and Figure 2 show the performance of the compared algorithms on two networks: a 10×10
grid graph and an Erdös-Rényi random graph of average degree 6. All algorithms are linearly con-
vergent, although their convergence rates scale on several orders of magnitude. In all experiments,
the centralized optimal algorithm DAGD has the best convergence rate, while MSDA has the best
convergence rate among decentralized methods. When the communication time is smaller than the
computation time (τ � 1), performing several communication rounds per gradient iteration will
improve the efficiency of the algorithm and MSDA substantially outperforms SSDA.
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(b) low communication time: τ = 0.1

Figure 3: Maximum approximation error for logistic classification on an Erdös-Rényi random net-
work of average degree 6 (n = 100).
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(b) low communication time: τ = 0.1

Figure 4: Maximum approximation error for logistic classification on a 10×10 grid graph (n = 100).

5.3 Logistic classification

The logistic classification problem consists in solving the optimization problem

min
θ∈Rd

1

m

m∑
i=1

ln
(

1 + e−yi·X
>
i θ
)

+ c‖θ‖22, (22)

where X ∈ Rd×m is a matrix containing m data points, and y ∈ {−1, 1}m is a vector containing
the m class assignments. The task is thus to classify a dataset by learning a linear classifier mapping
data points Xi to their associated class yi ∈ {−1, 1}. For our experiments, we fixed c = 0.1,
d = 10, and sampled m = 10, 000 data points, 5, 000 for the first class and 5, 000 for the second.
Each data point Xi ∼ N (yi1, 1) is a Gaussian random variable of mean yi1 and variance 1, where
yi = 21{i ≤ 5, 000} − 1 is the true class of Xi. These data points are then distributed randomly
and evenly to the n = 100 nodes of the network.

Figure 3 and Figure 4 show the performance of the compared algorithms for logistic classification
on two networks: a 10×10 grid graph and an Erdös-Rényi random graph of average degree 6. As for

12



least-squares regression, all algorithms are linearly convergent, and their convergence rates scale on
several orders of magnitude. In this case, the centralized optimal algorithm DAGD is outperformed
by MSDA, although the two convergence rates are relatively similar. Again, when the communica-
tion time is smaller than the computation time (τ � 1), performing several communication rounds
per gradient iteration will improve the efficiency of the algorithm and MSDA substantially outper-
forms SSDA. Note that, in Figure 4(a), D-ADMM requires 383 iterations to reach the same error
obtained after only 10 iterations of SSDA, demonstrating a substantial improvement over state-of-
the-art methods.

6 Conclusion

In this paper, we derived optimal convergence rates for strongly convex and smooth distributed opti-
mization in two settings: centralized and decentralized communications in a network. For the decen-
tralized setting, we introduced the multi-step dual accelerated (MSDA) algorithm with a provable
optimal linear convergence rate, and showed its high efficiency compared to other state-of-the-art
methods, including distributed ADMM and EXTRA. The simplicity of the approach makes the al-
gorithm extremely flexible, and allows for future extensions, including time-varying networks and
an analysis for non-strongly-convex functions. Finally, extending our complexity lower bounds to
time delays, variable computational speeds of local systems, or machine failures would be a notable
addition to this work.

A Detailed proofs

A.1 Complexity lower bounds

Proof of Theorem 1. This proof relies on splitting the function used by Nesterov to prove oracle
complexities for strongly convex and smooth optimization [8, 22]. Let β ≥ α > 0, G = (V, E) a
graph and A ⊂ V a set of nodes of G. For all d > 0, we denote as Acd = {v ∈ V : d(A, v) ≥ d}
the set of nodes at distance at least d from A, and let, for all i ∈ V , fAi : `2 → R be the functions
defined as:

fAi (θ) =


α
2n‖θ‖

2
2 + β−α

8|A| (θ
>M1θ − θ1) if i ∈ A

α
2n‖θ‖

2
2 + β−α

8|Acd|
θ>M2θ if i ∈ Acd

α
2n‖θ‖

2
2 otherwise

(23)

where M1 : `2 → `2 is the infinite block diagonal matrix with
(

1 −1
−1 1

)
on the diagonal, and

M2 =
( 1 0

0 M1

)
. First, note that, since 0 � M1 + M2 � 4I , f̄A = 1

n

∑n
i=1 f

A
i is α-strongly

convex and β-smooth. Then, Theorem 1 is a direct consequence of the following lemma:

Lemma 1. IfAcd 6= ∅, then for any t ≥ 0 and any black-box procedure one has, for all i ∈ {1, ..., n},

f̄A(θi,t)− f̄A(θ∗) ≥ α

2

(√
κg − 1
√
κg + 1

)2(1+ t
1+dτ )

‖θi,0 − θ∗‖2, (24)

where κg = β/α.
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Proof. This lemma relies on the fact that most of the coordinates of the vectors in the memory of
any node will remain equal to 0. More precisely, let ki,t = max{k ∈ N : ∃θ ∈ Mi,t s.t. θk 6= 0}
be the last non-zero coordinate of a vector in the memory of node i at time t. Then, under any
black-box procedure, we have, for any local computation step,

ki,t+1 ≤

 ki,t + 1{ki,t ≡ 0 mod 2} if i ∈ A
ki,t + 1{ki,t ≡ 1 mod 2} if i ∈ Acd
ki,t otherwise

. (25)

Indeed, local gradients can only increase even dimensions for nodes in A and odd dimensions for
nodes in Acd. The same holds for gradients of the dual functions, since these have the same block
structure as their convex conjugates. Thus, in order to reach the third coordinate, algorithms must
first perform one local computation in A, then d communication steps in order for a node in Acd to
have a non-zero second coordinate, and finally, one local computation in Acd. Accordingly, one must
perform at least k local computation steps and (k − 1)d communication steps to achieve ki,t ≥ k
for at least one node i ∈ V , and thus, for any k ∈ N∗,

∀t < 1 + (k − 1)(1 + dτ), ki,t ≤ k − 1. (26)

This implies in particular:

∀i ∈ V, ki,t ≤
⌊
t− 1

1 + dτ

⌋
+ 1 ≤ t

1 + dτ
+ 1. (27)

Furthermore, by definition of ki,t, one has θi,k = 0 for all k > ki,t, and thus

‖θi,t − θ∗‖22 ≥
+∞∑

k=ki,t+1

θ∗k
2. (28)

and, since f̄A is α-strongly convex,

f̄A(θi,t)− f̄A(θ∗) ≥ α

2
‖θi,t − θ∗‖22. (29)

Finally, the solution of the global problem minθ f̄
A(θ) is θ∗k =

(√
β−
√
α√

β+
√
α

)k
. Combining this result

with Eqs. (27), (28) and (29) leads to the desired inequality.

Using the previous lemma with d = ∆ the diameter of G and A = {v} one of the pair of nodes at
distance ∆ returns the desired result.

Proof of Theorem 2. Let γn =
1−cos(πn )

1+cos(πn ) be a decreasing sequence of positive numbers. Since γ2 =

1 and limn γn = 0, there exists n ≥ 2 such that γn ≥ γ > γn+1. The cases n = 2 and n ≥ 3
are treated separately. If n ≥ 3, let G be the linear graph of size n ordered from node v1 to vn, and
weighted with wi,i+1 = 1− a1{i = 1}. Then, if A = {v1, ..., vdn/32e} and d = (1− 1/16)n− 1,
we have |Acd| ≥ |A| and Lemma 1 implies:

f̄A(θi,t)− f̄A(θ∗) ≥ nα

2

(√
κg − 1
√
κg + 1

)2(1+ t
1+dτ )

‖θi,0 − θ∗‖2. (30)
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A simple calculation gives κl = 1 + (κg − 1) n
2|A| , and thus κg ≥ κl/16. Finally, if we take Wa as

the Laplacian of the weighted graph G, a simple calculation gives that, if a = 0, γ(Wa) = γn and,
if a = 1, the network is disconnected and γ(Wa) = 0. Thus, by continuity of the eigenvalues of
a matrix, there exists a value a ∈ [0, 1] such that γ(Wa) = γ. Finally, by definition of n, one has

γ > γn+1 ≥ 2
(n+1)2 , and d ≥ 15

16 (
√

2
γ − 1)− 1 ≥ 1

5
√
γ when γ ≤ γ3 = 1

3 .

For the case n = 2, we consider the totally connected network of 3 nodes, reweight only the edge
(v1, v3) by a ∈ [0, 1], and let Wa be its Laplacian matrix. If a = 1, then the network is totally
connected and γ(Wa) = 1. If, on the contrary, a = 0, then the network is a linear graph and
γ(Wa) = γ3. Thus, there exists a value a ∈ [0, 1] such that γ(Wa) = γ, and applying Lemma 1
with A = {v1} and d = 1 returns the desired result, since then κg ≥ 2κl/3 and d = 1 ≥ 1√

3γ
.

A.2 Convergence rates of SSDA and MSDA

Proof of Theorem 3. Each step of the algorithm can be decomposed in first computing gradients, and
then communicating these gradients across all neighborhoods. Thus, one step takes a time 1 + τ .
Moreover, the Hessian of the dual function F ∗(λ

√
W ) is

(
√
W ⊗ Id)∇2F ∗(λ

√
W )(
√
W ⊗ Id), (31)

where ⊗ is the Kronecker product and Id is the identity matrix of size d. Also, note that, in Alg.(2),
the current values xt and yt are always in the image of

√
W ⊗ Id (i.e. the set of matrices x such that

x>1 = 0). The condition number (in the image of
√
W ⊗ Id) can thus be upper bounded by κl

γ , and

Nesterov’s acceleration requires
√

κl
γ steps to achieve any given precision [22].

Proof of Theorem 4. First, since PK(W ) is a gossip matrix, Theorem 3 implies the convergence
of Alg.(3). In order to simplify the analysis, we multiply W by 2

(1+γ)λ1(W ) , so that the resulting
gossip matrix has a spectrum in [1−c−1

2 , 1+c−1
2 ]. Applying Theorem 6.2 in [25] with α = 1−c−1

2 ,
β = 1 + c−1

2 and γ = 0 implies that the minimum

min
p∈PK ,p(0)=0

max
x∈[1−c−1

2 ,1+c−1
2 ]
|p(t)− 1| (32)

is attained by PK(x) = 1− TK(c2(1−x))
TK(c2) . Finally, Corollary 6.3 of [25] leads to

γ(PK(W )) ≥
1− 2

cK1
1+c2K1

1 + 2
cK1

1+c2K1

=

(
1− cK1
1 + cK1

)2

, (33)

where c1 =
1−√γ
1+
√
γ , and taking K = b 1√

γ c implies

1√
γ(PK(W ))

≤ 1 + c
1√
γ+1

1

1− c
1√
γ+1

1

≤ 2. (34)

The time required to reach an ε > 0 precision using Alg.(3) is thus upper bounded by

O

(
(1 +Kτ)

√
κl

γ(PK(W )) ln(1/ε)

)
= O

(√
κl(1 + 1√

γ τ) ln(1/ε)
)

.

15



B Composite problems for machine learning

When the local functions are of the form

fi(θ) = gi(Biθ) + c‖θ‖2, (35)

where Bi ∈ Rmi×d and gi is smooth and has proximal operator which is easy to compute (and
hence also g∗i ), an additional Lagrange multiplier ν can be used to make the Fenchel conjugate of
gi appear in the dual optimization problem. More specifically, from the primal problem of Eq. (12),
one has, with ρ > 0 an arbitrary parameter:

inf
Θ
√
W=0

F (Θ) = inf
Θ
√
W=0, ∀i,xi=Biθi

1

n

n∑
i=1

gi(xi) + c‖θi‖22

= inf
Θ

sup
λ,ν

1

n

n∑
i=1

{
ν>i Biθi − g∗i (νi) + c‖θi‖22

}
+
ρ

n
tr(λ>Θ

√
W )

= sup
ν∈

∏n
i=1Rmi , λ∈Rd×n

− 1

n

n∑
i=1

g∗i (νi)−
1

4cn

n∑
i=1

‖B>i νi + ρλ
√
W i‖22.

To maximize the dual problem, we can use (accelerated) proximal gradient, with the updates:

νi,t+1 = inf
ν∈Rmi

g∗i (ν) +
1

2η

∥∥ν − νi,t +
η

2c
Bi(B

>
i νi,t + ρλt

√
W i)

∥∥2

2

λt+1 = λt − η
ρ

2cn

n∑
i=1

(B>i νi,t + ρλt
√
W i)
√
W
>
i .

We can rewrite all updates in terms of zt = λt
√
W ∈ Rd×n, as

νi,t+1 = inf
ν∈Rmi

g∗i (ν) +
1

2η

∥∥ν − νi,t +
η

2c
Bi(B

>
i νi,t + ρzi,t)

∥∥2

2

zt+1 = zt − η
ρ

2cn

n∑
i=1

(B>i νi,t + ρzi)W
>
i .

In order to compute the convergence rate of such an algorithm, if we assume that:

• each gi is µ-smooth,

• the largest singular value of each Bi is less than M ,

then we simply need to compute the condition number of the quadratic function

Q(ν, λ) =
1

2µ

n∑
i=1

‖νi‖22 +
1

4c

n∑
i=1

‖B>i νi + ρλ
√
W i‖22.

With the choice ρ2 = 1
λmax(W )

(
c
µ+M2), it is lower bounded by

(
1+µM

2

c

)
4
γ , which is a natural up-

per bound on κl/γ. Thus this essentially leads to the same convergence rate than the non-composite
case with the Nesterov and Chebyshev accelerations, i.e.

√
κl/γ.
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The bound on the conditional number may be shown through the two inequalities:

Q(ν, λ) 6
1

2µ

n∑
i=1

‖νi‖2 +
1

2c

n∑
i=1

‖ρλ
√
W i‖22 +

1

2c

n∑
i=1

‖B>i νi‖22,

Q(ν, λ) >
1

2µ

n∑
i=1

‖νi‖2 +
1

1 + η

1

4c

n∑
i=1

‖ρλ
√
W i‖22 −

1

η

1

4c

n∑
i=1

‖B>i νi‖22,

with η = M2µ/c.
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