6,324 research outputs found

    A compositional method for reliability analysis of workflows affected by multiple failure modes

    Get PDF
    We focus on reliability analysis for systems designed as workflow based compositions of components. Components are characterized by their failure profiles, which take into account possible multiple failure modes. A compositional calculus is provided to evaluate the failure profile of a composite system, given failure profiles of the components. The calculus is described as a syntax-driven procedure that synthesizes a workflows failure profile. The method is viewed as a design-time aid that can help software engineers reason about systems reliability in the early stage of development. A simple case study is presented to illustrate the proposed approach

    Toward Semantics-aware Representation of Digital Business Processes

    Get PDF
    An extended enterprise (EE) can be described by a set of models each representing a specific aspect of the EE. Aspects can for example be the process flow or the value description. However, different models are done by different people, which may use different terminology, which prevents relating the models. Therefore, we propose a framework consisting of process flow and value aspects and in addition a static domain model with structural and relational components. Further, we outline the usage of the static domain model to enable relating the different aspects

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Web Services Support for Dynamic Business Process Outsourcing

    Get PDF
    Outsourcing of business processes is crucial for organizations to be effective, efficient and flexible. To meet fast-changing market conditions, dynamic outsourcing is required, in which business relationships are established and enacted on-the-fly in an adaptive, fine-grained way unrestricted by geographic distance. This requires automated means for both the establishment of outsourcing relationships and for the enactment of services performed in these relationships over electronic channels. Due to wide industry support and the underlying model of loose coupling of services, Web services increasingly become the mechanism of choice to connect organizations across organizational boundaries. This paper analyzes to which extent Web services support the dynamic process outsourcing paradigm. We discuss contract -based dynamic business process outsourcing to define requirements and then introduce the Web services framework. Based on this, we investigate the match between the two. We observe that the Web services framework requires further support for cross - organizational business processes and mechanisms for contracting, QoS management and process-based transaction support and suggest ways to fill those gaps

    Distribution pattern-driven development of service architectures

    Get PDF
    Distributed systems are being constructed by composing a number of discrete components. This practice is particularly prevalent within the Web service domain in the form of service process orchestration and choreography. Often, enterprise systems are built from many existing discrete applications such as legacy applications exposed using Web service interfaces. There are a number of architectural configurations or distribution patterns, which express how a composed system is to be deployed in a distributed environment. However, the amount of code required to realise these distribution patterns is considerable. In this paper, we propose a distribution pattern-driven approach to service composition and architecting. We develop, based on a catalog of patterns, a UML-compliant framework, which takes existing Web service interfaces as its input and generates executable Web service compositions based on a distribution pattern chosen by the software architect

    Parameterizable Views for Process Visualization

    Get PDF
    In large organizations different users or user groups usually have distinguished perspectives over business processes and related data. Personalized views on the managed processes are therefore needed. Existing BPM tools, however, do not provide adequate mechanisms for building and visualizing such views. Very often processes are displayed to users in the same way as drawn by the process designer. To tackle this inflexibility this paper presents an advanced approach for creating personalized process views based on well-defined, parameterizable view operations. Respective operations can be flexibly composed in order to reduce or aggregate process information in the desired way. Depending on the chosen parameterization of the applied view operations, in addition, different "quality levels" with more or less relaxed properties can be obtained for the resulting process views (e.g., regarding the correctness of the created process view scheme). This allows us to consider the specific needs of the different applications utilizing process views (e.g., process monitoring tools or process editors). Altogether, the realized view concept contributes to better deal with complex, long-running business processes with hundreds up to thousands of activities

    A constraint specification approach to building flexible workflows

    Get PDF
    Process support systems, such as workflows, are being used in a variety of domains. However, most areas of application have focused on traditional production-style processes, which are characterised by predictability and repetitiveness. Application in non-traditional domains with highly flexible process is still largely unexplored. Such flexible processes are characterised by lack of ability to completely predefine and/or an explosive number of alternatives. Accordingly we define flexibility as the ability of the process to execute on the basis of a partially defined model where the full specification is made at runtime and may be unique to each instance. In this paper, we will present an approach to building workflow models for such processes. We will present our approach in the context of a non-traditional domain for workflow, deployment, which is, degree programs in tertiary institutes. The primary motivation behind our approach is to provide the ability to model flexible processes without introducing non-standard modelling constructs. This ensures that the correctness and verification of the language is preserved. We propose to build workflow schemas from a standard set of modelling constructs and given process constraints. We identify the fundamental requirements for constraint specification and classify them into selection, termination and build constraints. We will detail the specification of these constraints in a relational model. Finally, we will demonstrate the dynamic building of instance specific workflow models on the basis of these constraints
    corecore