5 research outputs found

    Character n-gram Embeddings to Improve RNN Language Models

    Full text link
    This paper proposes a novel Recurrent Neural Network (RNN) language model that takes advantage of character information. We focus on character n-grams based on research in the field of word embedding construction (Wieting et al. 2016). Our proposed method constructs word embeddings from character n-gram embeddings and combines them with ordinary word embeddings. We demonstrate that the proposed method achieves the best perplexities on the language modeling datasets: Penn Treebank, WikiText-2, and WikiText-103. Moreover, we conduct experiments on application tasks: machine translation and headline generation. The experimental results indicate that our proposed method also positively affects these tasks.Comment: AAAI 2019 pape

    The Mechanism of Additive Composition

    Get PDF
    Additive composition (Foltz et al, 1998; Landauer and Dumais, 1997; Mitchell and Lapata, 2010) is a widely used method for computing meanings of phrases, which takes the average of vector representations of the constituent words. In this article, we prove an upper bound for the bias of additive composition, which is the first theoretical analysis on compositional frameworks from a machine learning point of view. The bound is written in terms of collocation strength; we prove that the more exclusively two successive words tend to occur together, the more accurate one can guarantee their additive composition as an approximation to the natural phrase vector. Our proof relies on properties of natural language data that are empirically verified, and can be theoretically derived from an assumption that the data is generated from a Hierarchical Pitman-Yor Process. The theory endorses additive composition as a reasonable operation for calculating meanings of phrases, and suggests ways to improve additive compositionality, including: transforming entries of distributional word vectors by a function that meets a specific condition, constructing a novel type of vector representations to make additive composition sensitive to word order, and utilizing singular value decomposition to train word vectors.Comment: More explanations on theory and additional experiments added. Accepted by Machine Learning Journa
    corecore