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Abstract Additive composition (Foltz et al. in Discourse Process 15:285–307, 1998; Lan-
dauer and Dumais in Psychol Rev 104(2):211, 1997; Mitchell and Lapata in Cognit Sci
34(8):1388–1429, 2010) is a widely used method for computing meanings of phrases, which
takes the average of vector representations of the constituent words. In this article, we prove
an upper bound for the bias of additive composition, which is the first theoretical analysis
on compositional frameworks from a machine learning point of view. The bound is written
in terms of collocation strength; we prove that the more exclusively two successive words
tend to occur together, the more accurate one can guarantee their additive composition as an
approximation to the natural phrase vector. Our proof relies on properties of natural language
data that are empirically verified, and can be theoretically derived from an assumption that
the data is generated from a Hierarchical Pitman–Yor Process. The theory endorses additive
composition as a reasonable operation for calculating meanings of phrases, and suggests
ways to improve additive compositionality, including: transforming entries of distributional
word vectors by a function that meets a specific condition, constructing a novel type of vector
representations to make additive composition sensitive to word order, and utilizing singular
value decomposition to train word vectors.
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1 Introduction

The decomposition of generalization errors into bias and variance (Geman et al. 1992) is
one of the most profound insights of learning theory. Bias is caused by low capacity of
models when the training samples are assumed to be infinite, whereas variance is caused by
overfitting to finite samples. In this article, we apply the analysis to a new set of problems in
Compositional Distributional Semantics, which studies the calculation ofmeanings of natural
language phrases by vector representations of their constituent words. We prove an upper
bound for the bias of awidely used compositional framework, the additive composition (Foltz
et al. 1998; Landauer and Dumais 1997; Mitchell and Lapata 2010).

Calculations of meanings are fundamental problems in Natural Language Processing
(NLP). In recent years, vector representations have seen great success at conveying meanings
of individualwords (Levy et al. 2015).These vectors are constructed fromstatistics of contexts
surrounding thewords, based on theDistributionalHypothesis that words occurring in similar
contexts tend to have similar meanings (Harris 1954). For example, given a target word t , one
can consider its context as close neighbors of t in a corpus, and assess the probability pt

i of
the i-th word (in a fixed lexicon) occurring in the context of t . Then, the word t is represented
by a vector

(
F(pt

i )
)

i (where F is some function), and words with similar meanings to t will
have similar vectors (Miller and Charles 1991).

Beyond the word level, a naturally following challenge is to represent meanings of phrases
or even sentences. Based on theDistributional Hypothesis, it is generally believed that vectors
should be constructed from surrounding contexts, at least for phrases observed in a corpus
(Boleda et al. 2013). However, a main obstacle here is that phrases are far more sparse than
individual words. For example, in the British National Corpus (BNC) (The BNC Consortium
2007), which consists of 100M word tokens, a total of 16K lemmatized words are observed
more than 200 times, but there are only 46K such bigrams, far less than the 16, 0002 pos-
sibilities for two-word combinations. Be it a larger corpus, one might only observe more
rare words due to Zipf’s Law, so most of the two-word combinations will always be rare or
unseen. Therefore, a direct estimation of the surrounding contexts of a phrase can have large
sampling error. This partially fuels the motivation to construct phrase vectors from combin-
ing word vectors (Mitchell and Lapata 2010), which also bases on the linguistic intuition
that meanings of phrases are “composed” from meanings of their constituent words. In view
of machine learning, word vectors have smaller sampling errors, or lower variance since
words are more abundant than phrases. Then, a compositional framework which calculates
meanings from word vectors will be favorable if its bias is also small.

Here, “bias” is the distance between two types of phrase vectors, one calculated from
composing the vectors of constituent words (composed vector), and the other assessed from
context statistics where the phrase is treated as a target (natural vector). The statistics is
assessed from an infinitely large ideal corpus, so that the natural vector of the phrase can
be reliably estimated without sampling error, hence conveying the meaning of the phrase by
Distributional Hypothesis. If the distance between the two vectors is small, the composed
vector can be viewed as a reasonable approximation of the natural vector, hence an approxi-
mation of meaning; moreover the composed vector can bemore reliably estimated from finite
real corpora because words are more abundant than phrases. Therefore, an upper bound for
the bias will provide a learning-theoretic support for the composition operation.

A number of compositional frameworks have been proposed in the literature (Baroni and
Zamparelli 2010; Grefenstette and Sadrzadeh 2011; Socher et al. 2012; Paperno et al. 2014;
Hashimoto et al. 2014). Some are complicatedmethods based on linguistic intuitions (Coecke
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What vectors do we consider? (Section 2.1)Bias bound in practice; sketch of proof (Section 2.2)

A generative model satisfying 
the assumptions (Section 2.6)

Formalization; Our assumptions on 
natural language data (Section 2.3)

Theoretical effect of a condition 
on function F (Section 2.4)

Formal proof; intuitive 
explanation (Section 2.5)

What kind of vectors are 
additive compositional? 

(Section 3.1)

How to handle word order 
in additive composition? 

(Section 3.2)

How does dimension reduction 
affect additive compositionality? 

(Section 3.3)

Experimental  verification (Section 5)

Does the theory correlate with human judgments? (Section 6)

Proof of supporting 
lemmas (Appendix A)

Fig. 1 An overview of this article. Arrows show dependencies between sections

et al. 2010), and others are compared to human judgments for evaluation (Mitchell and Lapata
2010). However, none of them has been previously analyzed regarding their bias.1 The most
widely used framework is the additive composition (Foltz et al. 1998; Landauer and Dumais
1997), in which the composed vector is calculated by averaging word vectors. Yet, it was
unknown if this average is by any means related to statistics of contexts surrounding the
corresponding phrases.

In this article, we prove an upper bound for the bias of additive composition of two-word
phrases, and demonstrate several applications of the theory. An overview is given in Fig. 1;
we summarize as follows.

In Sect. 2.1, we introduce notations and define the vectors we consider in this work.
Roughly speaking, we use pΥ

i to denote the probability of the i-th word in a fixed lexicon
occurring within a context window of a target (i.e. a word or phrase) Υ , and define the i-th
entry of the natural vector as wΥ := (c · wΥ

i

)
and

wΥ
i := F(pΥ

i +1/n) − aΥ − bi .

Here, n is the lexicon size, aΥ , bi and c are real numbers and F is a function. We note that
the formalization is general enough to be compatible with several previous research.

In Sect. 2.2, we describe our bias bound for additive composition, sketch its proof, and
emphasize its practical consequences that can be tested on a natural language corpus. Briefly,
we show that the more exclusively two successive words tend to occur together, the more
accurate one can guarantee their additive composition as an approximation to the natural
phrase vector; but this guarantee comes with one condition that F should be a function that
decreases steeply around 0 and grows slowly at ∞; and when such condition is satisfied, one
can derive an additional property that all natural vectors have approximately the same norm.
These consequences are all experimentally verified in Sect. 5.3.

In Sect. 2.3, we give a formalized version of the bias bound (Theorem 1), with our assump-
tions on natural language data clarified. These assumptions include the well-know Zipf’s
Law, a similar law applied to word co-occurrences which we call the Generalized Zipf’s

1 Unlike natural vectors which always lie in the same space as word vectors, some compositional frameworks
constructmeanings of phrases in different spaces.Nevertheless, we argue that even in such cases it is reasonable
to require some mappings to a common space, because humans can usually compare meanings of a word and
a phrase. Then, by considering distances between mapped images of composed vectors and natural vectors,
we can define bias and call for theoretical analysis.
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Law, and some intuitively acceptable conditions. The assumptions are experimentally tested
in Sects. 5.1 and 5.2. Moreover, we show that the Generalized Zipf’s Law can be drived from
a widely used generative model for natural language (Sect. 2.6).

In Sect. 2.4, we prove some key lemmas regarding the aforementioned condition on func-
tion F ; in Sect. 2.5 we formally prove the bias bound (with some supporting lemmas proven
in “Appendix 1”), and further give an intuitive explanation for the strength of additive com-
position: namely, with two words given, the vector of each can be decomposed into two parts,
one encoding the contexts shared by both words, and the other encoding contexts not shared;
when the two word vectors are added up, the non-shared part of each of them tend to cancel
out, because non-shared parts have nearly independent distributions; as a result, the share
part gets reinforced, which is coincidentally encoded by the natural phrase vector.

Empirically, we demonstrate three applications of our theory:

1. The condition required to be satisfied by F provides a unified explanation on why some
recently proposed word vectors are good at additive composition (Sect. 3.1). Our exper-
iments also verify that the condition drastically affects additive compositionality and
other properties of vector representations (Sects. 5.3, 6).

2. Our intuitive explanation inspires a novel method for making vectors recognize word
order, which was long thought as an issue for additive composition. Briefly speaking,
since additive composition cancels out non-shared parts of word vectors and reinforces
the shared one, we show that one can use labels on context words to control what is
shared. In this case, we propose the Near–far Context in which the contexts of ordered
bigrams are shared (Sect. 3.2). Our experiments show that the resulting vectors can indeed
assess meaning similarities between ordered bigrams (Sect. 5.4), and demonstrate strong
performance on phrase similarity tasks (Sect. 6.1). Unlike previous approaches, Near–far
Context still composes vectors by taking average, retaining themerits of being parameter-
free and having a bias bound.

3. Our theory suggests that singular value decomposition (SVD) is suitable for preserving
additive compositionality in dimension reduction of word vectors (Sect. 3.3). Experi-
ments also show that SVDmight performbetter than othermodels in additive composition
(Sects. 5.5, 6).

We discuss related works in Sect. 4 and conclude in Sect. 7.

2 Theory

In this section, we discuss vector representations constructed from an ideal natural language
corpus, and establish a mathematical framework for analyzing additive composition. Our
analysis makes several assumptions on the ideal corpus, which might be approximations or
oversimplifications of real data. In Sect. 5, we will test these assumptions on a real corpus
and verify that the theory still makes reasonable predictions.

2.1 Notation and vector representation

A natural language corpus is a sequence of words. Ideally, we assume that the sequence is
infinitely long and contains an infinite number of distinct words.

Notation 1 We consider a finite sample of the infinite ideal corpus. In this sample, we denote
the number of distinct words by n, and use the n words as a lexicon to construct vector
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Table 1 Contexts are taken as the closest five words to each side for the targets “tax” and “rate”, and four
for the target “tax_rate”

…as a percentage of your income, your tax rate is generally less than that …

Target Words in context

tax percentage, of, your, income, your, rate, is, generally, less, than

rate of, your, income, your, tax, is, generally, less, than, that

tax_rate of, your, income, your, is, generally, less, than

Table 2 List of target types

Notation 2 Υ a general target can denote either of the following

Notation 2 s, t word targets

Notation 2 st two-word phrase target

Notation 2 {st} two-word phrase target with word order ignored

Definition 6 s/t\s a token of word t not next to the word s in corpus

Definition 15 s•, •t words in the context of s• (resp. •t) are assigned the
left-hand-side (resp. right-hand-side) Near–far
labels

Definition 16 s•\t, s/•t a target s• (resp. •t) not at the left (resp. right) of
word t (resp. s)

Theorem 1 S, T random word targets

General random word targets can form different types such
as {ST } and S/T \S

representations. From the sample, we assess the count Ci of the i-th word in the lexicon, and
assume that index 1 ≤ i ≤ n is taken such that Ci ≥ Ci+1. Let C := ∑n

i=1 Ci be the total
count, and denote pi,n := Ci/C .

With a sample corpus given, we can construct vector representations for targets, which
are either words or phrases. To define the vectors one starts from specifying a context for
each target, which is usually taken as words surrounding the target in corpus. As an example,
Table1 shows a word sequence, a phrase target and two word targets; contexts are taken as
the closest four or five words to the targets.

Notation 2 We use s, t to denote word targets, and st a phrase target consisting of two
consecutive words s and t . When the word order is ignored (i.e., either st or ts), we denote
the target by {st}. A general target is denoted by Υ . Later in this article, we will consider
other types of targets as well, and a full list of target types is shown in Table2.

Notation 3 Let C(Υ ) be the count of target Υ , and CΥ
i the count of i-th word co-occurring

in the context of Υ . Denote pΥ
i,n := CΥ

i /C(Υ ).

In order to approximate the ideal corpus, we will take a sample larger and larger, then
consider the limit. Under this limit, it is obvious that n → ∞ and C → ∞. Further, we
will assume some limit properties on pi,n and pΥ

i,n as specified in Sect. 2.3. These properties
capture our idealization of an infinitely large natural language corpus. In Sect. 2.6, we will
show that such properties can be derived from a Hierarchical Pitman–Yor Process, a widely
used generative model for natural language data.
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Table 3 Frequently used notations and general conventions in this article

Notation 1 i , n index 1 ≤ i ≤ n, where n is the lexicon size

Notation 1 pi,n empirical probability of the i-th word, pi,n ≥ pi+1,n

Notation 3 pΥ
i,n probability of the i-th word co-occurring in context of Υ ;

defined as pΥ
i,n := CΥ

i /C(Υ ).

Definition 4 wΥ
n := (cn · wΥ

i,n

)
1≤i≤n , where wΥ

i,n = F(pΥ
i,n +1/n) − aΥ

n − bi,n

Definition 5 B
{st}
n := ‖w{st}

n − 1
2 (ws

n + wt
n)‖

Definition 6 πs/t\s probability for an occurrence of t being non-neighbor of s

Definition 7 Λn set of observed two-word phrases, word order ignored

General E[·],Var[·] expected value and variance of a random variable

General IH indicator; IH = 1 if condition H is true, 0 otherwise

General P(H ) probability of H being true; P(H ) = E[IH ]
General λ, β, ξ, . . . lowercase Greek letters denote real constants

Theorem 1 X := pΥ
i,n/pi,n where Υ := {ST }, S/T \S, or T/S\T .

Lemma 1 Yi,n := F(pi,n X +1/n) − F(pi,nβ+1/n)

Lemma 1 ϕi,n := (pi,n)2λ
(
1 + (βnpi,n)−1)−1+2λ

Definition 4 We construct a natural vector for Υ from the statistics pΥ
i,n as follows:

wΥ
n := (cn · wΥ

i,n

)
1≤i≤n and wΥ

i,n := F(pΥ
i,n +1/n) − aΥ

n − bi,n .

Here, aΥ
n , bi,n and cn are real numbers and F is a smooth function on (0,∞). The subscript

n emphasizes that the vector will change if n becomes larger (i.e. a larger sample corpus is
taken). The scalar cn is for normalizing scales of vectors. In Sect. 2.2, we will further specify
some conditions on aΥ

n , bi,n , cn and F , but without much loss of generality.

To consider F(pΥ
i,n +1/n) instead of F(pΥ

i,n) can be viewed as a smoothing scheme that
guarantees F(x) being applied to x > 0. We will consider F that is not continuous at 0,
such as F(x) := ln x ; yet, wΥ

i,n has to be well-defined even if pΥ
i,n = 0. In practice, the pΥ

i,n
estimated from a finite corpus can often be 0; theoretically, the smoothing scheme plays a
role in our proof as well.

The definition of wΥ
n is general enough to cover a wide range of previously proposed

distributional word vectors. For example, if F(x) = ln x , aΥ
n = 0 and bi,n = ln pi,n , then

wΥ
i,n is the Point-wise Mutual Information (PMI) value that has been widely adopted in

NLP (Church and Hanks 1990; Dagan et al. 1994; Turney 2001; Turney and Pantel 2010).
More recently, the Skip-Gramwith Negative Sampling (SGNS)model (Mikolov et al. 2013a)
is shown to be a matrix factorization of the PMI matrix (Levy and Goldberg 2014b); and the
more general form of aΥ

n and bi,n is explicitly introduced by the GloVe model (Pennington
et al. 2014). Regarding other forms of F , it has been reported in Lebret and Collobert
(2014) and Stratos et al. (2015) that empirically F(x) := √

x outperforms F(x) := x . We
will discuss function F further in Sect. 3.1, and review some other distributional vectors in
Sect. 4.

We finish this section by pointing to Table3 for a list of frequently used notations.
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2.2 Practical meaning of the bias bound

A compositional framework combines vectorsws
n andwt

n to represent the meaning of phrase
“s t”. In this work, we study relations between this composed vector and the natural vector
w{st}

n of the phrase target.2 More precisely, we study the Euclidean distance

lim
n→∞‖w{st}

n − COMP(ws
n,wt

n)‖
where COMP(·, ·) is the composition operation. If a sample corpus is taken larger and larger,
we have limit n → ∞, and w{st}

n will be well estimated to represent the meaning of “s t
or t s”. Therefore, the above distance can be viewed as the bias of approximating w{st}

n by
the composed vector COMP(ws

n,wt
n). In practice, especially when COMP is a complicated

operation with parameters, it has been a widely adopted approach to learn the parameters by
minimizing the same distances for phrases observed in corpus (Dinu et al. 2013; Baroni and
Zamparelli 2010; Guevara 2010). These practices further motivate our study on the bias.

Definition 5 We consider additive composition, where COMP(ws
n,wt

n) := 1
2 (w

s
n + wt

n) is
a parameter-free composition operator. We define

B{st}
n := ‖w{st}

n − 1

2
(ws

n + wt
n)‖.

Our analysis starts from the observation that, every word in the context of {st} also occurs
in the contexts of s and t : as illustrated in Table1, if a word token t (e.g. “rate”) comes from
a phrase {st} (e.g. “tax rate”), and if the context window size is not too small, the context for
this token of t is almost the same as the context of {st}. This motivates us to decompose the
context of t into two parts, one coming from {st} and the other not.
Definition 6 Define target s/t\s as the tokens of word t which do not occur next to word s
in corpus. We use πs/t\s to denote the probability of t not occurring next to s, conditioned on
a token of word t . Practically, (1−πs/t\s) can be estimated by the count ratio C({st})/C(t).
Then, we have the following equation

pt
i,n = πs/t\s ps/t\s

i,n + (1 − πs/t\s)p{st}
i,n for all i, n (1)

because a word in the context of t occurs in the context of either {st} or s/t\s.

We can view πs/t\s and πt/s\t as indicating how weak the “collocation” between s and
t is. When πs/t\s and πt/s\t are small, s and t tend to occur next to each other exclusively,

so ws
n and wt

n are likely to correlate with w{st}
n , makingB

{st}
n small. This is the fundamental

idea of our bias bound, which estimatesB{st}
n in terms of πs/t\s and πt/s\t . We give a detailed

sketch below. First, by Triangle Inequality one immediately has

B{st}
n ≤ ‖w{st}

n ‖ + 1

2

(‖ws
n‖ + ‖wt

n‖).

Then, we note that both B
{st}
n and ‖wΥ

n ‖ scale with cn . Without loss of generality, we can
assume that cn is normalized such that the average norm of wΥ

n equals 1. Thus, if we can
prove that ‖wΥ

n ‖ = 1 for every target Υ , we will have an upper bound

B{st}
n ≤ 2. (2)

2 Or it should be wst
n if one cares about word order, which we will discuss in Sect. 3.2.
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This is intuitively obvious because if all vectors lie on the unit sphere, distances between
them will be less than the diameter 2. In this article, we will show that roughly speaking,
it is indeed that ‖wΥ

n ‖ = 1 for “every” Υ , and the above “upper bound” can further be
strengthened using Eq. (1).

More precisely, we will prove that if a target phrase ST is randomly chosen, then
lim

n→∞‖w{ST }
n ‖ converges to 1 in probability. The argument is sketched as follows. First, when

ST is random, p{ST }
i,n and w

{ST }
i,n become random variables. We assume that for each i �= j ,

p{ST }
i,n and p{ST }

j,n are independent random variables. Note this assumption in contrast to the

fact that pi,n ≥ p j,n for i > j ; nonetheless, we assume that p{ST }
i,n is random enough so

that when i changes, no obvious relation exists between p{ST }
i,n and p{ST }

j,n . Thus,
(
w

{ST }
i,n

)2’s
(1 ≤ i ≤ n, n fixed) are independent and we can apply the Law of Large Numbers:

lim
n→∞

∑n
i=1

(
w

{ST }
i,n

)2

∑n
i=1 E

[(
w

{ST }
i,n

)2] = 1 in probability. (3)

In words, the fluctuations of
(
w

{ST }
i,n

)2’s cancel out each other and their sum converges to
expectation. However, Eq. (3) requires a stronger statement than the ordinary Law of Large
Numbers; namely, we do not assume p{ST }

i,n and p{ST }
j,n are identically distributed.3 For this

generalized Law of LargeNumbers we need some technical conditions. One necessary condi-
tion is lim

n→∞
∑n

i=1 E
[(

w
{ST }
i,n

)2] = ∞, whichwe prove by explicitly calculatingE
[(

w
{ST }
i,n

)2];

another requirement is that the fluctuations of
(
w

{ST }
i,n

)2 must be at comparable scales so they
indeed cancel out. This is formalized as a uniform integrability condition, and we will show
it imposes a non-trivial constraint on the function F in definition of word vectors. Finally if
Eq. (3) holds, by setting cn :=∑n

i=1 E
[(

w
{ST }
i,n

)2] we are done.
We further strengthen upper bound (2) as follows. First, Eq. (1) suggests:

F(pt
i,n +1/n) ≈ πs/t\s F(ps/t\s

i,n +1/n) + (1 − πs/t\s)F(p{st}
i,n +1/n).

Since F is smooth, this equation can be justified as long as ps/t\s
i,n and p{st}

i,n are small compared
to 1/n. Then, we will rigorously prove that, when n is sufficiently large, the total error in the
above approximation becomes infinitesimal:

wt
n � πs/t\sw

s/t\s
n + (1 − πs/t\s)w{st}

n .

So we can replace wt
n and ws

n in definition of B{st}
n :

B{st}
n � 1

2
‖(πs/t\s + πt/s\t )w{st}

n − πs/t\sw
s/t\s
n − πt/s\tw

t/s\t
n ‖. (4)

With arguments similar to theprevious paragraph,wehave lim
n→∞‖wS/T \S

n ‖ and lim
n→∞‖wT/S\T

n ‖
converge to 1 in probability. Therefore, by Triangle Inequality we get

(4) ≤ 1

2

(
(πs/t\s + πt/s\t )‖w{st}

n ‖ + πs/t\s‖ws/t\s
n ‖ + πt/s\t‖wt/s\t

n ‖
)

= πs/t\s + πt/s\t ,

a better bound than (2). However, our bias bound is even stronger than this. Our further
argument goes to the intuition that, ws/t\s

n should have “positive correlation” with w{st}
n

3 This is reasonable, because pΥ
i,n is likely to be at the same scale as pi,n , whereas pi,n varies for different i .
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because as targets, both s/t\s and {st} contain word t ; on the other hand, ws/t\s
n and wt/s\t

n

should be “independent” because targets s/t\s and t/s\t cover disjoint tokens of different
words. With this intuition, we will derive the following bias bound:

(4) ≤ 1

2

√
(πs/t\s + πt/s\t )2 + π2

s/t\s + π2
t/s\t =

√
1

2
(π2

s/t\s + π2
t/s\t + πs/t\sπt/s\t ).

A brief explanation can be found in Sect. 2.5, after the formal proof. Our experiments suggest
that this bound is remarkably tight (Sect. 5.3). In addition, the intuitive explanation inspires
a way to make additive composition aware of word order (Sect. 3.2).

In the rest of this section, we will formally normalize cn , aΥ
n , bi,n and F for simplicity of

discussion. These are mild conditions and do not affect the generality of our results. Then,
we will summarize our claim of the bias bound, focusing on its practical verifiability.

Definition 7 Let Λn be the set of two-word phrases observed in a finite corpus, word order
ignored. We normalize cn such that the average norm of natural phrase vectors becomes 1:

1

|Λn |
∑

{st}∈Λn

‖w{st}
n ‖ = 1.

Definition 8 Since bi,n is canceled out in definition of B{st}
n , it does not affect the bias. It

does affect w{st}
n ; we set bi,n such that the centroid of natural phrase vectors becomes 0:

bi,n := 1

|Λn |
∑

{st}∈Λn

F(p{st}
i,n +1/n) − a{st}

n , (5)

so that
cn

|Λn |
∑

{st}∈Λn

w
{st}
i,n = 0 for all i.

Note that, if the centroid of natural phrase vectors is far from 0, the normalization in
Definition 7 would cause all phrase vectors cluster around one point on the unit sphere.
Then, the phrase vectors would not be able to distinguish different meanings of phrases. The
choice of bi,n in Definition 8 prevents such degenerated cases.

Next, if cn and F are fixed, B{st}
n is taking minimum at

a{st}
n − as

n + at
n

2
= 1

n

n∑

i=1

F(p{st}
i,n +1/n) − F(ps

i,n +1/n) + F(pt
i,n +1/n)

2
.

Hence, it is favorable to have the above equality. We can achieve it by adjusting aΥ
n such that

the entries of each vector average to 0.

Definition 9 We set

aΥ
n := 1

n

n∑

i=1

F(pΥ
i,n +1/n) − bi,n, (6)

so that

cn

n

n∑

i=1

wΥ
i,n = 0 for all Υ.
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Practically, one can calculate aΥ
n and bi,n by first assuming bi,n = 0 in (6) to obtain aΥ

n ,

and then substitute a{st}
n in (5) to obtain the actual bi,n . The value of aΥ

n will not change
because if all vectors have average entry 0, so dose their centroid. In Sect. 2.4, we will derive
asymptotic values of aΥ

n , bi,n and cn theoretically.

Definition 10 We assume there is a λ such that F ′(x) = x−1+λ. So F(x) can be either xλ/λ

(if λ �= 0) or ln x (if λ = 0). This assumption is mainly for simplicity; intuitively, behavior
of F(x) only matters at x ≈ 0, because F is applied to probability values which are close to
0. Indeed, our results can be generalized to G(x) such that

lim
x→0

G ′(x)x1−λ = 1 and G ′(x)x1−λ ≤ M for some constant M.

See Remark 6 in Sect. 2.3 for further discussion. The exponent λ turns out to be a crucial
factor in our theory; we require λ < 0.5, which imposes a non-trivial constraint on F .

Our bias bound is summarized as follows.

Claim 1 Assume λ < 0.5, the factors aΥ
n , bi,n and cn are normalized as above, and distri-

butional vectors are constructed from an ideal natural language corpus. Then:

lim
n→∞B{st}

n ≤
√
1

2
(π2

s/t\s + π2
t/s\t + πs/t\sπt/s\t ).

As we expected, for more “collocational” phrases, since πs/t\s and πt/s\t are smaller, the
bias bound becomes stronger. Claim 1 states a prediction that can be empirically tested on a
real large corpus; namely, one can estimate pΥ

i,n from the corpus and constructwΥ
n for a fixed

n, then check if the inequality holds approximately while omitting the limit. In Sect. 5.3, we
conduct the experiment and verify the prediction. Our theoretical assumptions on the “ideal
natural language corpus” will be specified in Sect. 2.3.

Besides it being empirically verified for phrases observed in a real corpus, the true value
of Claim 1 is that the upper bound holds for an arbitrarily large ideal corpus. We can assume
any plausible two-word phrase to occur sufficiently many times in the ideal corpus, even
when it is unseen in the real one. In that case, a natural vector for the phrase can only be
reliably estimated from the ideal corpus, but Claim 1 suggests that additive composition of
word vectors provides a reasonable approximation for that unseen natural vector. Meanwhile,
since word vectors can be reliably estimated from the real corpus, Claim 1 endorses additive
composition as a reasonable meaning representation for unseen or rare phrases. On the other
hand, it endorses additive composition for frequent phrases as well, because such phrases
usually have strong collocations and Claim 1 says that the bias in this case is small.

The condition λ < 0.5 on function F is crucial; we discuss its empirical implications in
Sect. 3.1.

Further, the following is a by-product of Theorem 2 in Sect. 2.4, which corresponds to the
previous Eq. (3) in our sketch of proof.

Claim 2 Under the same conditions in Claim 1, we have lim
n→∞‖w{st}

n ‖ = 1 for all {st}.

Thus, all natural phrase vectors approximately lie on the unit sphere. This claim is also
empirically verified in Sect. 5.3. It enables a link between the Euclidean distance B{st}

n and
the cosine similarity, which is the most widely used similarity measure in practice.
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2.3 Formalization and assumptions on natural language data

Claim 1 is formalized as Theorem 1 in the following.

Theorem 1 For an ideal natural language corpus, we assume that:

(A) lim
n→∞ pi,n · i ln n = 1.

(B) Let S, T be randomly chosen word targets. If Υ := {ST }, S/T \S or T/S\T , then:

(B1) For n fixed, pΥ
i,n’s (1 ≤ i ≤ n) can be viewed as independent random variables.

(B2) Put X := pΥ
i,n/pi,n. There exist ξ, β such that P(x ≤ X) = ξ/x for x ≥ β.

(C) For each i and n, the random variables pS/T \S
i,n and pT/S\T

i,n are independent, whereas

F(pS/T \S
i,n +1/n) and F(p{ST }

i,n +1/n) have positive correlation.

Then, if E
[
F(X)2

]
< ∞, we have

lim
n→∞B{ST }

n ≤
√
1

2
(π2

S/T \S + π2
T/S\T + πS/T \SπT/S\T ) in probability.

We explain the assumptions of Theorem 1 in details below.

Remark 1 Assumption (A) is Zipf’s Law (Zipf 1935), which states that the frequency of the
i-th word is inversely proportional to i . So pi,n is proportional to i−1, and the factor ln n
comes from equations

∑n
i=1 pi,n = 1 and

∑n
i=1 i−1 ≈ ln n. One immediate implication of

Zipf’s Law is that one can make npi,n arbitrarily small by choosing sufficiently large n and
i . More precisely, for any δ > 0, we have

npi,n ≤ δ ⇔ n

δ ln n
≤ i ≤ n, (7)

so as long as n is large enough that ln n ≥ 1/δ, there is an i in (7) such that npi,n ≤ δ. The
limit npi,n → 0 will be extensively explored in our theory.

Empirically, Zipf’s Law has been thoroughly tested under several settings (Montemurro
2001; Ha et al. 2002; Clauset et al. 2009; Corral et al. 2015).

Remark 2 When a target Υ is randomly chosen, (B1) assumes that the probability value
pΥ

i,n is random enough that, when i �= j , there is no obvious relation between pΥ
i,n and pΥ

j,n
(i.e. they are independent). We test this assumption in Sect. 5.1. Assumption (B2) suggests
that pΥ

i,n is at the same scale as pi,n , and the random variable X := pΥ
i,n/pi,n has a power

law tail4 of index 1. We regard (B2) as the Generalized Zipf’s Law, analogous to Zipf’s Law
because pi,n’s (1 ≤ i ≤ n, n fixed) can also be viewed as i.i.d. samples drawn from a power
law of index 1. In Sect. 2.6, we show that Assumption (B) is closely related to a Hierarchical
Pitman–Yor Process; and in Sect. 5.2 we empirically verify this assumption.

Remark 3 Assumption (C) is based on an intuition that, since S/T \S and T/S\T are different
word targets and pS/T \S

i,n and pT/S\T
i,n are assessed from disjoint parts of corpus, the two

random variables should be independent. On the other hand, the targets S/T \S and {ST }
both contain a word T , so we expect F(pS/T \S

i,n +1/n) and F(p{ST }
i,n +1/n) to have positive

correlation. This assumption is also empirically tested in Sect. 5.1.

4 The assumption can further be relaxed to lim
x→∞ xP(x ≤ X) = ξ . We only consider (B2) for simplicity.
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Remark 4 Since X has a power law tail of index 1, the probability density − dP(x ≤ X)

is a multiple of x−2 dx for sufficiently large x . Wherein, E
[
F(X)2

]
becomes an integral of

F(x)2x−2 dx , so λ < 0.5 is a necessary condition for E
[
F(X)2

]
< ∞.

Conversely, λ < 0.5 is usually a sufficient condition for E
[
F(X)2

]
< ∞, for instance,

if X follows the Pareto Distribution (i.e. ξ = β) or Inverse-Gamma Distribution. Another
example will be given in Sect. 2.6.

Lemma 1 Define Yi,n := F(pΥ
i,n +1/n)− F(pi,nβ +1/n) = F(pi,n X +1/n)− F(pi,nβ+

1/n). Put ei,n := E
[
Yi,n
]
, vi,n := Var

[
Yi,n
]
, and ϕi,n := (pi,n)2λ

(
1 + (βnpi,n)−1

)−1+2λ
.

Then,

(a) There exists χ such that
|ei,n |√
ϕi,n

≤ χ for all i, n.

(b) lim
npi,n→0

ei,n√
ϕi,n

= 0.

(c) The set of random variables
{
Y 2

i,n/ϕi,n
}

is uniformly integrable; i.e., for any ε > 0,

there exists N such that E
[
Y 2

i,n IY 2
i,n>Nϕi,n

]
< εϕi,n for all i, n.

(d) lim
npi,n→0

vi,n

ϕi,n
= η �= 0, where η =

∫ ∞

0

(
F(z + β) − F(β)

)2 · ξ dz

z2
.

Remark 5 As sketched in Sect. 2.2, our proof requires calculation of E
[(

wΥ
i,n

)2]; this is done
by applying Lemma 1 above. The lemma calculates the first and second moments of Yi,n ;
note that Yi,n differs from wΥ

i,n only by some constant shift.5 As the lemma shows, when i

and n vary, the squared first moment e2i,n and the variance vi,n scale with the constant ϕi,n . At
the limit npi,n → 0, Lemma 1(b)(d) suggests that ei,n/

√
ϕi,n and vi,n/ϕi,n converge, which

is where the power law tail of X mostly affects the behavior of Yi,n .

Remark 6 The function F(x) in Lemma 1 can be generalized to function G(x) as mentioned
in Definition 10. Because by Cauchy’s Mean Value Theorem,

G(pi,n x+1/n) − G(pi,nβ+1/n)

F(pi,n x+1/n) − F(pi,nβ+1/n)
= G ′(ζ )ζ 1−λ for some pi,nβ+1/n ≤ ζ ≤ pi,n x+1/n,

so the random variable G(pi,n X + 1/n) − G(pi,nβ + 1/n) is dominated by MYi,n and
converges pointwisely to Yi,n as n → ∞. Then, by Lebesgue’s Dominated Convergence
Theorem, we can generalize Lemma 1 to G(x), and in turn generalize our bias bound.

Lemma 2 Regarding the asymptotic behavior of ϕi,n, we have

(a) lim
npi,n→0

n2λ · ϕi,n

npi,n
= β1−2λ.

(b) n−1+2λ ln n · ϕi,n ≤ β1−2λ/ i .

(c) For any δ > 0, there exists Mδ such that n−1+2λ ln n
∑ n

δ ln n
i=1 ϕi,n ≤ Mδ for all n.

(d) For any δ > 0, we have lim
n→∞ n−1+2λ ln n

∑n
n

δ ln n ≤i ϕi,n = ∞.

Lemma 1 is derived from Assumption (B) and the condition E
[
F(X)2

]
< ∞. Lemma 2

is derived from Assumption (A). The proofs are found in “Appendix 1”.

5 Namely, the constant F(pi,nβ+1/n) − aΥ
n − bi,n . As a further clue, in the upcoming Theorem 2 we will

prove that aΥ
n can be taken as 0, and bi,n as E

[
F(p{ST }

i,n +1/n)
]
which is in the same scale as F(pi,nβ+1/n).
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2.4 Why is λ < 0.5 important?

As we note in Remark 4, the condition λ < 0.5 is necessary for the existence of E
[
F(X)2

]
.

This existence is important because, briefly speaking, the Law of Large Numbers only holds
when expected values exist.More precisely,weuse the following lemma to prove convergence
in probability in Theorem 1, and in particular Eq. (3) as discussed in Sect. 2.2. IfE

[
F(X)2

] =
∞, the required uniform integrability is not satisfied, whichmeans the fluctuations of random
variables may have too different scales to completely cancel out, so their weighted averages
as we consider will not converge.

Lemma 3 Assume Ui,n’s (1 ≤ i ≤ n, n fixed) are independent random variables and{
Ui,n/ϕi,n

}
is uniformly integrable. Assume lim

npi,n→0
E[Ui,n]/ϕi,n = �. Then,

lim
n→∞

∑n
i=1 Ui,n∑n
i=1 ϕi,n

= � in probability.

Proof This lemma is a combination of the Law of Large Numbers and the Stolz-Cesàro
Theorem. We prove it in two steps.

First step, we prove

lim
n→∞

∑n
i=1 Ui,n − E[Ui,n]
∑n

i=1 ϕi,n
= 0 in probability.

This is a generalized version of the Law of Large Numbers, saying that the weighted average
of Ui,n converges in probability to the weighted average of E[Ui,n]. Since {Ui,n/ϕi,n

}
is

uniformly integrable, for any ε > 0 there exists N such that E
[|Ui,n |I|Ui,n |>Nϕi,n

]
< ε2ϕi,n

for all i, n. Our strategy is to divide the average of Ui,n into two parts, namely
∑n

i=1 Ui,n∑n
i=1 ϕi,n

=
∑n

i=1 Ui,n I|Ui,n |≤Nϕi,n∑n
i=1 ϕi,n

+
∑n

i=1 Ui,n I|Ui,n |>Nϕi,n∑n
i=1 ϕi,n

,

and show that each part is close to its expectation. For the |Ui,n | > Nϕi,n part, we have
∣∣∣∣E
[∑n

i=1 Ui,n I|Ui,n |>Nϕi,n∑n
i=1 ϕi,n

]∣∣∣∣ < ε2 for all n

by definition, so it has negligible expectation and can be bounded by Markov’s Inequality:

P

(∣∣∣∣

∑n
i=1 Ui,n I|Ui,n |>Nϕi,n∑n

i=1 ϕi,n
− E

[∑n
i=1 Ui,n I|Ui,n |>Nϕi,n∑n

i=1 ϕi,n

]∣∣∣∣ > ε

)
< 2ε for all n.

On the other hand, for the |Ui,n | ≤ Nϕi,n part we have Var
[
Ui,n I|Ui,n |≤Nϕi,n

] ≤
Nϕi,nE

[|Ui,n |]; and {Ui,n/ϕi,n
}
being uniformly integrable implies E

[|Ui,n |] ≤ Mϕi,n for
some M , so

Var

[∑n
i=1 Ui,n I|Ui,n |≤Nϕi,n∑n

i=1 ϕi,n

]
≤

∑n
i=1 ϕ2

i,n
(∑n

i=1 ϕi,n
)2 N M.

By Lemma 2(b), we have

(
n−1+2λ ln n

)2
n∑

i=1

ϕ2
i,n ≤ β2−4λ

∞∑

i=1

i−2 < ∞.
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In contrast, by Lemma 2(d) we have

lim
n→∞

(
n−1+2λ ln n

)2(
n∑

i=1

ϕi,n

)2 = ∞.

Therefore,

lim
n→∞

∑n
i=1 ϕ2

i,n
(∑n

i=1 ϕi,n
)2 = 0 and lim

n→∞Var

[∑n
i=1 Ui,n I|Ui,n |≤Nϕi,n∑n

i=1 ϕi,n

]
= 0.

Thus, the |Ui,n | ≤ Nϕi,n part concentrates to its expectation by Chebyshev’s Inequality. The
first step is completed.

Second step, we prove

lim
n→∞

∑n
i=1 E[Ui,n]
∑n

i=1 ϕi,n
= lim

npi,n→0

E[Ui,n]
ϕi,n

.

This is a generalized version of the Stolz-Cesàro Theorem, saying that the limit ratio of two
series equals the limit ratio of corresponding terms. By definition and Eq. (7), for any ε > 0
there exists δ such that

n

δ ln n
≤ i ≤ n ⇒

∣∣∣
E[Ui,n]

ϕi,n
− �

∣∣∣ < ε for all n.

In addition, we can bound
∣∣∣
E[Ui,n]

ϕi,n
− �

∣∣∣ ≤ M for 1 ≤ i ≤ n

δ ln n

because
{
Ui,n/ϕi,n

}
is uniformly integrable. The ratio

(∑n
i=1 E[Ui,n])/(∑n

i=1 ϕi,n
)
can be

viewed as a weighted average of two parts, one from indices n
δ ln n ≤ i ≤ n and the other

from 1 ≤ i < n
δ ln n . By Lemma 2(d), the weight for the first part tends to infinity:

lim
n→∞ n−1+2λ ln n

n∑

n
δ ln n ≤i

ϕi,n = ∞;

whereas by Lemma 2(c), the weight for the second part is finite:

n−1+2λ ln n

n
δ ln n∑

i=1

ϕi,n < ∞.

Therefore, the first part dominates, so lim
n→∞

∣∣(∑n
i=1 E[Ui,n])/(∑n

i=1 ϕi,n
)− �

∣∣ < ε. ��

Combining Lemma 1(a)(c)(d) and Lemma 3, we immediately obtain the following. This
is almost Eq. (3) we wanted in Sect. 2.2.

Corollary 4 Let Υ := {ST }, S/T \S or T/S\T . Then we have

lim
n→∞

∑n
i=1

(
F(pΥ

i,n +1/n) − E
[
F(pΥ

i,n +1/n)
])2

η
∑n

i=1 ϕi,n
= 1 in probability.

Now, we can asymptotically derive the normalization of aΥ
n , bi,n and cn , as defined in

Sect. 2.2. A by-product is that the norms of natural phrase vectors converge to 1.
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Theorem 2 If we put a{st}
n := 0 for all {st}, and set bi,n := E

[
F(p{ST }

i,n +1/n)
]
, cn :=

(
η
∑n

i=1 ϕi,n
)−1/2

, then

lim
n→∞

cn

|Λn |
∑

{st}∈Λn

w
{st}
i,n = 0, lim

n→∞
cn

n

n∑

i=1

w
{ST }
i,n = 0 and lim

n→∞‖w{ST }
n ‖ = 1

in probability.

Proof By the assumptions on a{st}
n and bi,n , we have

w
{st}
i,n = F(p{st}

i,n +1/n) − E
[
F(p{ST }

i,n +1/n)
]
.

Then,

‖w{ST }
n ‖2 =

∑n
i=1

(
F(pΥ

i,n +1/n) − E
[
F(pΥ

i,n +1/n)
])2

η
∑n

i=1 ϕi,n
,

so Corollary 4 implies lim
n→∞‖w{ST }

n ‖ = 1.

Next, Lemma 1(c) implies that there exists M such that

Var
[
F(p{ST }

i,n +1/n)
] ≤ Mϕi,n for all i, n,

hence

E

⎡

⎣

(
cn

n

n∑

i=1

w
{ST }
i,n

)2
⎤

⎦ = 1

n2

∑n
i=1 Var

[
F(p{ST }

i,n +1/n)
]

η
∑n

i=1 ϕi,n
≤ 1

n2

M

η
→ 0 (when n → ∞).

Therefore, by Chebyshev’s Inequality we have lim
n→∞

cn

n

n∑

i=1

w
{ST }
i,n = 0 in probability.

Finally, the ordinary version of Law of Large Numbers implies that

lim
n→∞

1

|Λn |
∑

{st}∈Λn

F(p{st}
i,n +1/n) − E

[
F(p{ST }

i,n +1/n)
]

√
Var
[
F(p{ST }

i,n +1/n)
] = 0 in probability;

so we immediately have

lim
n→∞

cn

|Λn |
∑

{st}∈Λn

w
{st}
i,n = 0 for all i.

The theorem is proven. ��

Therefore, if we set a{st}
n , bi,n and cn as in Theorem 2, all conditions in Definition 7,

Definition 8 and Definition 9 are asymptotically satisfied. In addition, we have obtained the
result stated in Claim 2.

In view of Corollary 4, if λ < 0.5 is not satisfied, the norms of natural phrase vectors will
not converge. This prediction is experimentally verified in Sect. 5.3.
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2.5 Proof of Theorem 1 and an intuitive explanation

In this section,we start to useEq.(1) and derive our bias bound.Recall that Eq. (1) decomposes
pt

i,n into a linear combination of ps/t\s
i,n and p{st}

i,n ; our first notice is that F(pt
i,n+1/n) can be

decomposed similarly into a linear combination of F(ps/t\s
i,n +1/n) and F(p{st}

i,n +1/n), as if the
function F has linearity. This is because F is smooth, and when npi,n is sufficiently small, the
probability value pi,n is small compared to 1/n, so F(x+1/n) can be linearly approximated
as F ′(1/n)x + F(1/n), as long as x is at the same scale as pi,n . This is formalized as the
following lemma.

Lemma 5 The set of random variables
{(

F(pT
i,n +1/n) − πS/T \S F(pS/T \S

i,n +1/n) − (1 − πS/T \S)F(p{ST }
i,n +1/n)

)2
/ϕi,n

}

is uniformly integrable, and

lim
npi,n→0

E

[(
F(pT

i,n +1/n) − πS/T \S F(pS/T \S
i,n +1/n) − (1 − πS/T \S)F(p{ST }

i,n +1/n)
)2]

ϕi,n
= 0.

Proof For brevity, we set

P1 := pS/T \S
i,n , P2 := p{ST }

i,n , π := πS/T \S,

and F̃(x) := F(x+1/n) − F(pi,nβ+1/n).

By Eq. (1) we have pT
i,n = π P1 + (1 − π)P2, so F̃(pT

i,n) = F̃(π P1 + (1 − π)P2) lies in

between F̃(P1) and F̃(P2). Therefore,
(
F̃(pT

i,n) − π F̃(P1) − (1 − π)F̃(P2)
)2 ≤ (F̃(P1) − F̃(P2)

)2

≤ 4F̃(P1)
2 IF̃(P1)2≥F̃(P2)2

+ 4F̃(P2)
2 IF̃(P2)2≥F̃(P1)2

.

By Lemma 1(c),
{

F̃(P1)
2/ϕi,n

}
and

{
F̃(P2)

2/ϕi,n
}
are uniformly integrable. So for any

ε > 0, we have E
[
F̃(P1)

2 IF̃(P1)2>Nϕi,n

]
< εϕi,n and E

[
F̃(P2)

2 IF̃(P2)2>Nϕi,n

]
< εϕi,n for

some N . Consider the condition

C := “Either F̃(P1)
2 > Nϕi,n or F̃(P2)

2 > Nϕi,n”,

which is weaker than “
(
F̃(pT

i,n) − π F̃(P1) − (1 − π)F̃(P2)
)2

> 4Nϕi,n”, and we have

E

[(
F̃(pT

i,n) − π F̃(P1) − (1 − π)F̃(P2)
)2

IC
]

≤ E
[
4F̃(P1)

2 IF̃(P1)2>Nϕi,n
+ 4F̃(P2)

2 IF̃(P2)2>Nϕi,n

]

< 8εϕi,n .
(8)

So
{(

F̃(pT
i,n) − π F̃(P1) − (1 − π)F̃(P2)

)2
/ϕi,n

}
is uniformly integrable.

The previous argument also suggests that the case C being satisfied is negligible, because
(8) is arbitrarily small. Thus, we only have to consider the complement of C , namely

¬C := “Both F̃(P1)
2 ≤ Nϕi,n and F̃(P2)

2 ≤ Nϕi,n”.
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Under this condition, intuitively F̃(P1) and F̃(P2) are restricted to a small range so a linear
approximation of F becomes valid. More precisely, we show that

lim
npi,n→0

E

[(
F̃(pT

i,n) − π F̃(P1) − (1 − π)F̃(P2)
)2

I¬C

]

ϕi,n
= 0, (9)

which will complete the proof. For brevity, we set

F̂(x) := F(x + 1) − F(1), U1 := F̂(n P1), U2 := F̂(n P2).

Let H be the inverse function of F̂ :

H(F̂(x)) = x,

and put

J (u1, u2;π) := F̂(π H(u1) + (1 − π)H(u2)) − πu1 − (1 − π)u2.

Note that the functions F̂ , H and J do not depend on n, i , S or T . Now, we consider the limit
npi,n → 0. By Lemma 2(a), we can replace the ϕi,n in (9) with npi,n · n−2λ; and since

nλ F̃(x) = F(nx+1) − F(npi,nβ+1) → F̂(nx) (when npi,n → 0),

we can replace nλ F̃(x) with F̂(nx). Thus, (9) is equivalent to

lim
npi,n→0

E

[
J (U1, U2;π)2 ID

]

npi,n
= 0, (10)

where D is the condition

D := “Both U 2
1 ≤ Nnpi,n and U 2

2 ≤ Nnpi,n”.

Now, since ∂
∂u1

J (0, 0;π) = ∂
∂u2

J (0, 0;π) = 0, we have

lim
u21+u22→0

J (u1, u2;π)2

u2
1 + u2

2

= 0 uniformly on 0 ≤ π ≤ 1.

Therefore, when npi,n → 0 we have

E

[
J (U1, U2;π)2 ID

npi,n

]
= E

[
J (U1, U2; π)2 ID

U 2
1 + U 2

2

· U 2
1 + U 2

2

npi,n

]

≤ 2NE

[
J (U1, U2;π)2 ID

U 2
1 + U 2

2

]

→ 0.

Equation (10) is proven and we complete. ��
Now, we are ready to prove Theorem 1. An intuitive discussion is given after the proof.

Proof of Theorem 1 As in Theorem2,we set a{st}
n := 0, bi,n := E

[
F(p{ST }

i,n +1/n)
]
and cn :=

(
η
∑n

i=1 ϕi,n
)−1/2.Assume at

n := 0 for all t , then one can calculate that lim
n→∞

cn
n

∑n
i=1 wT

i,n =
0 in probability, by using Lemma 5 and similar to the proof of Theorem 2. Thus, we set
at

n := 0. Then,

(
B{ST }

n

)2 =
∑n

i=1

(
F(p{ST }

i,n +1/n) − 1
2

(
F(pS

i,n +1/n) + F(pT
i,n +1/n)

))2

η
∑n

i=1 ϕi,n
.
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Next, by Lemma 5, Lemma 3 and Triangle Inequality, we can replace F(pT
i,n +1/n) with

πS/T \S F(pS/T \S
i,n +1/n) + (1 − πS/T \S)F(p{ST }

i,n +1/n),

and replace F(pS
i,n +1/n) with

πT/S\T F(pT/S\T
i,n +1/n) + (1 − πT/S\T )F(p{ST }

i,n +1/n).

For brevity, we put π1 := πS/T \S , π2 := πT/S\T , F̃(x) := F(x +1/n) − F(pi,nβ+1/n)

and

w̃
{ST }
i,n := F̃(p{ST }

i,n ), w̃
S/T \S
i,n := F̃(pS/T \S

i,n ), w̃
T/S\T
i,n := F̃(pT/S\T

i,n ).

We use “�” to denote asymptotic equality at the limit n → ∞. Then,

(
B{ST }

n

)2 �
∑n

i=1

(
(π1 + π2)w̃

{ST }
i,n − π1w̃

S/T \S
i,n − π2w̃

T/S\T
i,n

)2

4η
∑n

i=1 ϕi,n
.

Again, by Lemma 1(a)(b), Lemma 3 and Triangle Inequality, we can replace w̃Υ
i,n with

ŵΥ
i,n := w̃Υ

i,n − E[w̃Υ
i,n] (where Υ is either {ST }, S/T \S or T/S\T ). Hence,

(
B{ST }

n

)2 �(π1 + π2)
2

∑n
i=1

(
ŵ

{ST }
i,n

)2

4η
∑n

i=1 ϕi,n
+ π2

1

∑n
i=1

(
ŵ

S/T \S
i,n

)2

4η
∑n

i=1 ϕi,n
+ π2

2

∑n
i=1

(
ŵ

T/S\T
i,n

)2

4η
∑n

i=1 ϕi,n

− 2π1(π1 + π2)

∑n
i=1 ŵ

S/T \S
i,n ŵ

{ST }
i,n

4η
∑n

i=1 ϕi,n
− 2π2(π1 + π2)

∑n
i=1 ŵ

T/S\T
i,n ŵ

{ST }
i,n

4η
∑n

i=1 ϕi,n

+ 2π1π2

∑n
i=1 ŵ

S/T \S
i,n ŵ

T/S\T
i,n

4η
∑n

i=1 ϕi,n
.

By Corollary 4, we have

∑n
i=1

(
ŵ

{ST }
i,n

)2

4η
∑n

i=1 ϕi,n
� 1

4
,

∑n
i=1

(
ŵ

S/T \S
i,n

)2

4η
∑n

i=1 ϕi,n
� 1

4
and

∑n
i=1

(
ŵ

T/S\T
i,n

)2

4η
∑n

i=1 ϕi,n
� 1

4
.

By Assumption (C), we have E
[
ŵ

S/T \S
i,n ŵ

T/S\T
i,n

] = 0, so applying Lemma 3 we get

∑n
i=1 ŵ

S/T \S
i,n ŵ

T/S\T
i,n

4η
∑n

i=1 ϕi,n
� lim

npi,n→0

E
[
ŵ

S/T \S
i,n ŵ

T/S\T
i,n

]

4ηϕi,n
= 0.

Also by Assumption (C), we have E
[
ŵ

S/T \S
i,n ŵ

{ST }
i,n

] ≥ 0 and E
[
ŵ

T/S\T
i,n ŵ

{ST }
i,n

] ≥ 0, so

lim
n→∞

∑n
i=1 ŵ

S/T \S
i,n ŵ

{ST }
i,n

4η
∑n

i=1 ϕi,n
≥ 0 and lim

n→∞

∑n
i=1 ŵ

T/S\T
i,n ŵ

{ST }
i,n

4η
∑n

i=1 ϕi,n
≥ 0.

Therefore, lim
n→∞

(
B

{ST }
n

)2 ≤ 1
4

(
(π1 + π2)

2 + π2
1 + π2

2

) = 1
2 (π

2
1 + π2

2 + π1π2). ��

Using notations in the proof of Theorem1, from a high level it is as if we have the following
decomposition:

wt
i,n = π1ŵ

s/t\s
i,n + (1 − π1)ŵ

{st}
i,n ,
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which is in correspondence to the decomposition of pt
i,n in Equation (1). Similarly,

ws
i,n = π2ŵ

t/s\t
i,n + (1 − π2)ŵ

{st}
i,n ,

and by definition w
{st}
i,n = ŵ

{st}
i,n . Thus,

(
w

{st}
i,n − 1

2
(ws

i,n + wt
i,n)
)2 = 1

4

(
(π1 + π2)ŵ

{st}
i,n − π1ŵ

s/t\s
i,n − π2ŵ

t/s\t
i,n

)2

= 1

4

(
(π1 + π2)

2(ŵ{st}
i,n

)2 + π2
1

(
ŵ

s/t\s
i,n

)2 + π2
2

(
ŵ

t/s\t
i,n

)2

− 2π1(π1 + π2)ŵ
s/t\s
i,n ŵ

{st}
i,n − 2π2(π1 + π2)ŵ

t/s\t
i,n ŵ

{st}
i,n

+ 2π1π2ŵ
s/t\s
i,n ŵ

t/s\t
i,n

)
.

By taking summation cn
∑n

i=1, term ŵ
s/t\s
i,n ŵ

t/s\t
i,n ’s cancel out to 0 because ŵ

S/T \S
i,n and

ŵ
T/S\T
i,n are independent; meanwhile, ŵs/t\s

i,n ŵ
{st}
i,n ’s and ŵ

t/s\t
i,n ŵ

{st}
i,n ’s sum to positive because

ŵ
S/T \S
i,n and ŵ

T/S\T
i,n are positively correlated to ŵ

{ST }
i,n . Therefore, the sum of the above is

bounded by 1
4

(
(π1 + π2)

2 + π2
1 + π2

2

) = 1
2 (π

2
1 + π2

2 + π1π2).
In view of this explanation, the technical points of Theorem 1 are as follows. First, the

decomposition ofwt
i,n into ŵ

s/t\s
i,n and ŵ

{st}
i,n is not exact; there is difference between ŵ

s/t\s
i,n and

w̃
s/t\s
i,n due to the expected value, and there is difference between F(pT

i,n+1/n) and the linear

combination of F(pS/T \S
i,n +1/n) and F(p{ST }

i,n +1/n). However, by Lemma 1(b) the expected
value converges to 0, and by Lemma 5 the linear approximation holds asymptotically. So this
first issue is settled. Second, themost importantly, term

(
ŵ

{st}
i,n

)2’s,
(
ŵ

s/t\s
i,n

)2’s and
(
ŵ

t/s\t
i,n

)2’s
have to sum to constants independent of s and t , otherwise they cannot be separated from
π1 and π2 in the calculation of B{st}

n . This requires Eq. (3) as we discussed in Sect. 2.2, and
it is a generalized version of the Law of Large Numbers. For this law to hold, one needs
conditions to guarantee that the fluctuations of random variables are at comparable scales to
cancel out. This leads to the condition λ < 0.5, which is a non-trivial constraint on function
F . Formally, Eq. (3) is proven as Corollary 4.

Insights brought by our theory lead to several applications. First, aswe found that the power
law tail of natural language data requires λ < 0.5 for constructing additively compositional
vectors, our theory provides important guidance for empirical research on Distributional
Semantics (Sect. 3.1). Second, as we found that wt

i,n and ws
i,n have decompositions in which

ŵ
{st}
i,n is a common factor and survives averaging, but ŵs/t\s

i,n and ŵ
t/s\t
i,n cancel out each other,

we come to the idea of harnessing additive composition by engineering what is common in
the summands. Then, for example, we can make additive composition aware of word order
(Sect. 3.2). Third, as one can read from Lemma 2(c)(d) and the proof of Lemma 3, it is
important to realize that the behavior of vector representations is dominated by entries at
dimensions corresponding to low-frequency words, namelywΥ

i,n’s where
n

δ ln n ≤ i ≤ n. This
understanding has impact on dimension reduction (Sect. 3.3).

2.6 Hierarchical Pitman–Yor process

In Assumptions (A)(B) of Theorem 1 we have required several properties to be satisfied by
the probability values pi,n and pΥ

i,n . Meanwhile, pi,n’s and pΥ
i,n’s (1 ≤ i ≤ n, n fixed) define

distributions from which words can be generated. This setting is reminiscent of a Bayesian
model where priors of word distributions are specified.
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Conversely, by the well-known de Finetti’s Theorem, an exchangeable random sequence
of words (i.e., given any sequence sample, all permutations of that sample occur with the
same probability) can be seen as if the words are drawn i.i.d. from a conditioned word
distribution, where the distribution itself is drawn from a prior. A widely studied example
is the Pitman–Yor Process (Pitman and Yor 1997; Pitman 2006); in this section, we use the
process to define a generative model, from which Assumptions (A)(B) can be derived.

Definition 11 A Pitman–Yor Process PY (α, θ) (0 < α < 1, θ > −α) defines a prior for
word distributions, which is the prior corresponding to the exchangeable random sequence
generated by the following Chinese Restaurant Process:

1. First, generate a new word.
2. At each step, let C(�) be the count of word � , and C := ∑� C(�) the total count;

let N be the number of distinct words. Then:

(2.1) Generate a new word with probability
θ + αN

θ + C
.

(2.2) Or, generate a new copy of an existing word � , with probability
C(�) − α

θ + C
.

Definition 12 In the above process PY (α, θ), we define p(�) := lim
C(�)

C
, where limit

is taken at Step → ∞. Fix a word index i such that p(�i ) ≥ p(�i+1). Put pi := p(�i ).

Theorem 3 For a sequence generated by PY (α, θ), we have lim C/N 1/α = Z for some Z.

Proof This is Theorem 3.8 in Pitman (2006). ��
Theorem 4 We have lim

i→∞ pi · i1/αΓ (1− α)1/α = Z, where Z is the same as in Theorem 3.

Proof This is Lemma 3.11 in Pitman (2006). ��
Theorem 4 shows that, if words are generated by a Pitman–Yor Process PY (α, θ), then pi

has a power law tail of index α. It is in the same form as Assumption (A), and when α ≈ 1,
it approximates the Zipf’s Law.

For two sequences generated by PY (α, θ), their corresponding Z as in Theorem 3
may differ (since the sequences are random), even if they are generated with the same
hyper-parameters α and θ . Nevertheless, the limit always exists, and Z follows a statisti-
cal distribution. The probability density of Z−α is derived in Pitman (2006), Theorem 3.8:

− dP(x ≤ Z−α) = Γ (θ + 1)

Γ (θ/α + 1)
xθ/αgα(x) dx (x > 0), (11)

where gα(x) is the Mittag–Leffler density function:

gα(x) := 1

πα

∞∑

k=0

(−1)k+1

k! Γ (αk + 1) sin(παk)xk−1.

In this article, we only need the fact that lim
x→0

xgα(x) is a nonzero constant.

Next, we consider the co-occurrence probability pΥ (�), conditioned on � being in the
context of a targetΥ . One first notes that pΥ (�) is likely to be related to p(�); i.e., frequent
words are likely to occur in every context, regardless of target. Tomodel this intuition, the idea
of Hierarchical Pitman–Yor Process (Teh 2006) is to adapt PY (α, θ) such that in each step,
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if a new word is to be generated, it is no longer generated brand new, but drawn from another
Pitman–Yor Process instead. This second Pitman–Yor Process serves as a “reference” which
controls how frequently a word is likely to occur. More precisely, a Hierarchical Pitman–Yor
Process HPY (α1, θ1;α2, θ2) generates sequences as follows.

Definition 13 In HPY (α1, θ1;α2, θ2), instead of generating words directly, one generates a
“reference” at each step, where the reference can refer to new words or existing words. We
use ρ to denote a reference and �ρ the word referred to by the reference.

1. First step, generate a new reference which refers to a new word.
2. At each step, let C(ρ) be the count of reference ρ, and C(�) := ∑

�ρ=� C(ρ) the
count of all references referring to word � ; let C := ∑

� C(�) be the total count,
Nr (�) the number of distinct references referring to � , and Nr := ∑

� Nr (�) the
total number of distinct references; finally, let Nw be the number of distinct words.

(2.1) Generate a new reference referring to a new word, with probability

1

θ1 + C
· θ1 + α1Nr

θ2 + Nr
· (θ2 + α2Nw).

(2.2) Generate a new reference referring to an existing word � , with probability

1

θ1 + C
· θ1 + α1Nr

θ2 + Nr
· (Nr (�) − α2).

(2.3) Or, generate a new copy of an existing reference ρ, with probability

1

θ1 + C
· (C(ρ) − α1).

It is easy to see from definition that HPY (α1, θ1;α2, θ2) generates an exchangeable word
sequence; and if we focus on distinct references (i.e., ignoring (2.3), consider Nr (�) as “the
count ofword�” in the ordinaryPitman–YorProcess), then the process becomes PY (α2, θ2).
We assume this is the same process which defines word probability p(�), so

p(�) = lim
Nr (�)

Nr
;

and we define the conditional probability pΥ (�) as:

pΥ (�) := lim
C(�)

C
.

Thus, HPY (α1, θ1;α2, θ2) indeed connects pΥ (�) to p(�). This connection between word
probability and conditioned word probability has been explored in Teh (2006); in which, it
is used in an n-gram language model to connect the bigram probability p(w|u) to unigram
probability p(w), for deriving a smoothing method.

Unfortunately, a precise analysis on the above pΥ (�) is beyond the reach of the authors;
instead, we consider a slightly modified process which is much simpler for our purpose.

Definition 14 A Modified Hierarchical Pitman–Yor Process MHPY (α1, θ1;α2, θ2) gener-
ates sequences as follows. Using the same notation as in Definition 13:

1. First step, generate a new reference which refers to a new word.
2. At each step:
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(2.1) Generate a new reference referring to a new word, with probability

1

D
· (θ2 + α2Nw).

(2.2) Generate a new reference referring to an existing word � , with probability

1

D
· (Nr (�) − α2).

(2.3) Or, generate a new copy of an existing reference ρ, with probability

1

D
· Nr (�

ρ) − α2

θ1 + α1Nr (�ρ)
· (C(ρ) − α1).

In above, D is a normalization factor that makes the probability values sum to 1:

D := θ2 + α2Nw +
∑

�

Nr (�) − α2

θ1 + α1Nr (�)
· (C(�) + θ1).

MHPY (α1, θ1;α2, θ2)modifies HPY (α1, θ1;α2, θ2) by canceling (θ1+α1Nr )/(θ2+Nr )

in (2.1) and (2.2), and scaling (2.3) by a (Nr (�
ρ) − α2)/(θ1 + α1Nr (�

ρ)) factor instead. It
is noteworthy that, since lim Nr = ∞ and lim Nr (�

ρ) = ∞, we have

lim
θ1 + α1Nr

θ2 + Nr
= α1 and lim

Nr (�
ρ) − α2

θ1 + α1Nr (�ρ)
= 1

α1
.

So the asymptotic behaviors of MHPY (α1, θ1;α2, θ2) and HPY (α1, θ1;α2, θ2) are similar.
A favorable property of MHPY (α1, θ1;α2, θ2) is that, like HPY (α1, θ1;α2, θ2), it

becomes PY (α2, θ2) when one focuses on distinct references, so we have

p(�) = lim
Nr (�)

Nr
(12)

as before; besides, if restricted to a specific word � (i.e., ignoring (2.1), only consider the
references referring to � , and regard references as “words”, C(ρ) as “the count of word
ρ”, and C(�) := ∑

�ρ=� C(ρ) as “the total count”, Nr (�) as “the number of distinct
words” in the ordinary Pitman–Yor Process), then the process becomes PY (α1, θ1). Thus,
by Theorem 3

lim
C(�)

Nr (�)1/α1
= Z� for some Z� . (13)

Therefore, combining (12) and (13) we have

pΥ (�) := lim
C(�)

C
= p(�)1/α1 Z� lim

N 1/α1
r

C
.

So pΥ (�)/p(�)1/α1 is a constant multiple of Z� , which follows a distribution specified in
Eq. (11); and it is easy to see that Z� ’s for different � are mutually independent. Thus, we
have obtained Assumption (B1).

As for Assumption (B2), we assume θ1 = 1 and derive the distribution of Z� from (11):

− dP(z ≤ Zw) = α1

Γ (1/α1 + 1)

z−α1gα1(z
−α1)

z2
dz (z > 0).

Since lim
x→0

xgα(x) is a nonzero constant, the above probability density is of order o(z−2)

when z → ∞, so the random variable Zw has a power law tail of index 1. Thus, Assumption
(B2) is approximately satisfied when α1 ≈ 1 and θ1 = 1.
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3 Applications

In this section, we demonstrate three applications of our theory.

3.1 The choice of function F

The condition λ < 0.5 specifies a nontrivial constraint on the function F . In Sect. 2.4 we
have shown that this is a necessary condition for the norms of natural phrase vectors to
converge. The convergence of norms is an outstanding property that might affect not only
additive composition but also the composition ability of vector representations in general.
Specifically, we note that F(x) = ln x when λ = 0, and F(x) = √

x when λ = 0.5. It
is straightforward to predict that these functions might perform better in composition tasks
than functions that have larger λ, such as F(x) := x or F(x) := x ln x . In Sect. 5.3, we show
experiments that verify the necessity of λ < 0.5 for our bias bound to hold, and in Sect. 6
we show that F indeed drastically affects additive compositionality as judged by human
annotators; while F(x) := ln x and F(x) := √

x perform similarly well, F(x) := x and
F(x) := x ln x are much worse.

Different settings of function F have been considered in previous research, and spec-
ulations have been made about the reason of semantic additivity of some of the vector
representations. In Pennington et al. (2014), the authors noted that logarithm is a homo-
morphism from multiplication to addition, and used this property to justify F(x) := ln x
for training semantically additive word vectors, but based on the unverified hypothesis that
multiplications of co-occurrence probabilities have specialties in semantics. On the other
hand, Lebret and Collobert (2014) proposed to use F(x) := √

x , which is motivated by the
Hellinger distance between two probability distributions, and reported it being better than
F(x) := x . Stratos et al. (2015) proposed a similar but more general and better-motivated
model, which attributed F(x) := √

x to an optimal choice that stabilizes the variances of
Poisson random variables. Based on the assumption that co-occurrence counts are generated
by a Poisson Process, the authors pointed out that F(x) := √

x may have the effect of sta-
bilizing the variance in estimating word vectors. In contrast, our theory shows clearly that
F affects the bias of additive composition, besides variance. All in all, none of the previ-
ous research can explain why F(x) := ln x and F(x) := √

x are both good choices but
F(x) := x is not.

Intuitively, the condition λ < 0.5 requires F(x) to decrease steeply as x tends to 0. The
steep slope has effect of “amplifying” the fluctuations of lower co-occurrence probabilities,
and “suppressing” higher ones as a result. Formally, this can be read from Lemma 1, which
shows that Var[F(pΥ

i,n+1/n)] scales with ϕi,n = pi,n
(

pi,n + (βn)−1
)−1+2λ. When λ < 0.5,

the
(

pi,n + (βn)−1
)−1+2λ factor decreases as pi,n increases, and the decrease becomes faster

when λ is smaller. Thus, in the vector representations we consider, higher co-occurrence
probabilities are “suppressed” more when λ is smaller.

3.2 Handling word order in additive composition

By considering the vector representationw{st}
n we have ignored word order and conflated the

phrases “s t” and “t s”. Though the meanings of the two might be related somehow, to treat
a compositional framework as approximating w{st}

n instead of wst
n would certainly be trou-

blesome, especially when one tries to extend our theory to longer phrases or even sentences.
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Fig. 2 Surrounding two-word phrase “s t”, the Near–far contexts assigned to s•, •t and st are the same

Fig. 3 Surrounding phrase “t s”, word order reversed, the Near–far contexts assigned to s• and •t differ in
their N–F labels

As the following example (Landauer et al. 1997) demonstrates, meanings of sentences may
differ greatly as word order changes.

a. It was not the sales manager who hit the bottle that day, but the office worker with the
serious drinking problem.

b. That day the office manager, who was drinking, hit the problem sales worker with a
bottle, but it was not serious.

Thus, it is necessary to handle the changes of meaning brought by different word order.
Traditionally, additive composition is considered unsuitable for this purpose, because one
always has ws

n + wt
n = wt

n + ws
n . However, the commutativity can be broken by defining

different contexts for “left-hand-side” words and “right-hand-side” words, denoted by t•
and •t , respectively. Then, the co-occurrence probabilities pt•

i,n and p•t
i,n will be different,

so 1
2 (w

s•
n + w•t

n ) and 1
2 (w

t•
n + w•s

n ) are different vectors. In this section, we propose the
Near–far Context, which specifies contexts for s• and •t such that the additive composition
1
2 (w

s•
n + w•t

n ) approximates the natural vector wst
n for ordered phrase “s t”.

Definition 15 In Near–far Context, context words are assigned labels, either N or F. For
constructing vector representations, we use a lexicon of N-F labeledwords, and regardwords
with different labels as different entries in the lexicon. For any target, we label the nearer
two words to each side by N, and the farther two words to each side by F. Except that, for
the “left-hand-side” word s• we skip one word adjacent to the right; and similarly, for the
“right-hand-side” word •t we skip one word adjacent to the left (Fig. 2).

The idea behind Near–far Context is that, in the context of phrase “s t”, each word is
assigned an N-F label the same as in the context of s• and •t (Fig. 2). On the other hand,
for targets s and t occurring in the order-reversed phrase “t s”, context words are labeled
differently for s• and •t (Fig. 3). As we discussed in Sect. 2.2, the key fact about additive
composition is that if a word token t comes from phrase “s t” or “t s”, the context for this
token of t is almost the same as the context of “s t” or “t s”. By introducing different labels
for context words of t• and •t , we are able to distinguish “s t” from “t s”. More precisely,
similar to our discussion in Sect. 2.5, the common component of ws•

i,n and w•t
i,n will survive
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in the average 1
2 (w

s•
i,n + w•t

i,n), whereas independent ones will cancel out each other. Thus,

the additive composition 1
2 (w

s•
n + w•t

n ) will become closer to wst
n rather than wts

n , because
s• and •t share context surrounding “s t” but not “t s”.

Definition 16 Formally, as analogue to Definition 6, we define target s•\t which counts
every s• not at the left of word t . We denote πs•\t the probability of s being not at the left
of t , conditioned on its occurrence. Practically, one can estimate (1− πs•\t ) by C(st)/C(s).
Similarly, we define s/•t and πs/•t . Then, we have equations

ps•
i,n = πs•\t ps•\t

i,n + (1 − πs•\t )pst
i,n for all i, n

p•t
i,n = πs/•t ps/•t

i,n + (1 − πs/•t )pst
i,n for all i, n

as parallel to (1).

The following claim is parallel to Claim 1.

Claim 3 Under conditions parallel to Claim 1, we have

lim
n→∞Bst

n := ‖wst
n − 1

2
(ws•

n + w•t
n )‖ ≤

√
1

2
(π2

s•\t + π2
s/•t + πs•\tπs/•t ).

In Sect. 5.4, we verify Claim 3 experimentally, and show that in contrast, the error ‖wts
n −

1
2 (w

s•
n +w•t

n )‖ for approximating the order-reversed phrase “t s” can exceed this bias bound.
Further, we demonstrate that by using the additive composition of Near–far Context vectors,
one can indeed assess meaning similarities between ordered phrases.

3.3 Dimension reduction

By far we have only discussed vector representations that have a high dimension equal to the
lexicon size n. In practice, peoplemainly use low-dimensional “embeddings” ofwords to rep-
resent theirmeaning.Manyof the embeddings, includingSGNSandGloVe, can be formalized
as linear dimension reduction, which is equivalent to the finding of a d-dimensional vector
vt (where d � n) for each target word t , and an (n, d)-matrix A such that

∑
t L(Avt ,wt

n)

is minimized for some loss function L(·, ·). In other words, Avt is trained as a good approx-
imation for wt

n .
Naturally, we expect the loss function L to account for a crucial factor inword embeddings.

Although there are empirical investigations on other detailed designs of embedding methods
(e.g. how to count co-occurrences, see Levy et al. 2015), the loss functions have not been
explicitly discussed previously. In this section, we discuss how the loss functions would
affect additive compositionality of word embeddings, from a viewpoint of bounding the bias
‖v{st} − 1

2 (v
s + vt )‖.

SVD When L is the L2-loss, itsminimization has a closed-form solution given by the Singular
Value Decomposition (SVD). More precisely, one considers a matrix whose j-th column is
wt

n where t is the j-th target word. Then, SVD factorizes the matrix into UΣV �, where U ,
V are orthonormal and Σ is diagonal. Let Σd denote the truncated Σ to the top d singular
values. Then, A is solved as U

√
Σd and vt the j-th column of

√
Σd V �. SVD has been used

in Lebret and Collobert (2014), Stratos et al. (2015) and Levy et al. (2015). In this setting,
we have

‖Avs − ws
n‖ ≤ ε1, ‖Avt − wt

n‖ ≤ ε2 and ‖Av{st} − w{st}
n ‖ ≤ ε3,
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where ε1, ε2 and ε3 are minimized. Thus, by Triangle Inequality we have

‖A · (v{st} − 1

2
(vs + vt )

)‖ ≤ B{st}
n + 1

2
(ε1 + ε2) + ε3.

Further, by Claim 1 we can bound B
{st}
n for sufficiently large n, so ‖v{st} − 1

2 (v
s + vt )‖ is

bounded in turn because A is a bounded operator. This bound suggests that word embeddings
trained by SVD preserve additive compositionality.

However, the same argument does not directly apply to other loss functions because a
general loss may not satisfy a triangle inequality, and a bound for Euclidean distance may
not always transform to a bound for the loss, or vice versa. Specifically, we describe two
widely used alternative embeddings in the following and discuss the effects of their loss.

GloVe The GloVe model (Pennington et al. 2014) trains a dimension reduction for vector
representations with F(x) := ln x . Let vt

i be the i-th entry of Avt , and Ct
i the co-occurrence

count. Then, the loss function of GloVe is given by

L(vt
i , w

t
i,n) := f

(
Ct

i

)
(vt

i − wt
i,n)2,

where f is a function set to constant when Ct
i is larger than a threshold, and decreases to

0 when Ct
i → 0. In words, GloVe uses a weighted L2-loss and the weight is a function of

co-occurrence count. To minimize the loss, GloVe uses stochastic gradient descent methods
such as AdaGrad (Duchi et al. 2011).

SGNS The Skip-Gram with Negative Sampling (SGNS) model (Mikolov et al. 2013a) also
trains a dimension reductionwith F(x) := ln x . The training is based on theNoiseContrastive
Estimation (NCE) (Gutmann and Hyvärinen 2012), so its loss function has two parameters,
the number k of noise samples per data point, and the noise distribution pnoisei,n .

Claim 4 Let vt
i be the i-th entry of Avt . The loss function of SGNS is given by

L(vt
i , w

t
i,n) := C(t)Dφi

(
vt

i + ln(kpnoisei,n ), wt
i,n + ln(kpnoisei,n )

)
,

where Dφ(·, ·) is the Bregman divergence associated to the convex function

φ(x) := (pt
i,n + kpnoisei,n

)
ln
(
exp(x) + kpnoisei,n

)
.

When k → +∞, Dφ converges to the Bregman divergence Dϕ associated to ϕ(x) := exp(x).

Proof of Claim 4 is found in “Appendix 2”. We draw a graph of the SGNS loss in Fig. 4,
where Dφ

(
vt

i + ln(kpnoisei,n ), wt
i,n + ln(kpnoisei,n )

)
is plotted on y-axis against vt

i − wt
i,n on

x-axis. Note that the graph grows faster at x → +∞ than x → −∞, suggesting that an
overestimation of wt

i,n will be punished more than an underestimation. In addition, the loss
function weighsmore on high co-occurrence probabilities, as indicated by the pt

i,n coefficient
in the equation of the limit curve (Fig. 4). Thus, SGNS loss tends to enforce underestimation
ofwt

i,n for frequent context words (as overestimation is costly), and compensatewt
i,n for rare

ones (i.e., overestimation on rare context words is affordable and will be done if necessary).
This is a special property of SGNS which might have some smoothing effect.

Compared to SVD, both the loss functions of GloVe and SGNS weigh less on rare context
words. As a result, the trained Avt may fail to precisely approximate the low co-occurrence
part of wt

n . As we discussed in Sect. 2.5, entries corresponding to low-frequency words
dominate the behavior of vector representations; thus, failing to precisely approximate this
part might hinder the inheritance of additive compositionality from high-dimensional vector
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x = vi
t −wi,n

t

y
y = pi,n

t exp(x)− x −1( )

y = Dφ vi
t + ln(kpi,n

noise ), wi,n
t + ln(kpi,n

noise ))(

Fig. 4 A graph of the SGNS loss function with two asymptotes (red), and its limit curve at k → +∞ with
one asymptote (blue) (Color figure online)

representations to low-dimensional embeddings. Therefore, we conjecture that word vectors
trained by GloVe or SGNS might exhibit less additive compositionality compared to SVD,
and the composition might be less respectful to our bias bound.

The previous discussion is only exploratory and cannot fully complywith practice because,
after vt is trained by dimension reduction, people usually re-scale the norms of all vt to 1,
and then they use the normalized vectors in additive composition. It is not clear why this
normalization step can usually result in better performance.

Nevertheless, in our experiments (Sect. 5.5), we find that word vectors trained by SVD
preserve our bias bound well in additive composition, even after the normalization step is
conducted. In contrast, vectors trained by GloVe or SGNS are less respectful to the bound.
Further, in extrinsic evaluations (Sect. 6) we show that vectors trained by SVD can indeed be
more additive compositional, as judged by human annotators.

4 Related work

Additive composition is a classical approach to approximating meanings of phrases and/or
sentences (Foltz et al. 1998; Landauer and Dumais 1997). Compared to other composi-
tion operations, vector addition/average has either served as a strong baseline (Mitchell and
Lapata 2008; Takase et al. 2016), or remained one of the most competitive methods until
recently (Banea et al. 2014). Additive composition has also been successfully integrated into
severalNLP systems. For example, Tian et al. (2014) use vector additions for assessing seman-
tic similarities between paraphrase candidates in a logic-based textual entailment recognition
system (e.g. the similarity between “blamed for death” and “cause loss of life” is calculated by
the cosine similarity between sums of word vectors vblame+vdeath and vcause+vloss+vlife); in
Iyyer et al. (2015), average of vectors ofwords in awhole sentence/document is fed into a deep
neural network for sentiment analysis and question answering, which achieves near state-of-
the-art performance with minimum training time. There are other semantic relations handled
by vector additions as well, such as word analogy (e.g. the vector vking − vman + vwoman is
close to vqueen, suggesting “man is to king as woman is to queen”, see Mikolov et al. 2013b),
and synonymy (i.e. a set of synonyms can be represented by the sum of vectors of the words
in the set, see Rothe and Schütze 2015). We expect all these utilities to be related to our
theory of additive composition somehow, for example a link between additive composition
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and word analogy is hypothesized in Sect. 6.2. Ultimately, our theory would provide new
insights into previous works, for instance, the insights about how to construct word vectors.

Lack of syntactic or word-order dependent effects on meaning is considered one of the
most important issue of additive composition (Landauer 2002). Driven by this point of view,
a number of advanced compositional frameworks have been proposed to cope with word
order and/or syntactic information (Mitchell and Lapata 2008; Zanzotto et al. 2010; Baroni
and Zamparelli 2010; Coecke et al. 2010; Grefenstette and Sadrzadeh 2011; Socher et al.
2012; Paperno et al. 2014; Hashimoto et al. 2014). The usual approach is to introduce new
parameters that represent different word positions or syntactic roles. For example, given a
two-word phrase, one can first transform the two word vectors by different matrices and
then add the results, so the two matrices are parameters (Mitchell and Lapata 2008); or,
regarding different syntactic roles, one can assign matrices to adjectives and use them to
modify vectors of nouns (Baroni and Zamparelli 2010); further, one can insert neural network
layers between parents and children in a syntactic tree (Socher et al. 2012). An empirical
comparison of composition models can be found in Blacoe and Lapata (2012), with an
accessible introduction to the literature. One theoretical issue of these methods, however, is
the lack of learning guarantee. In contrast, our proposal of the Near–far Context demonstrates
thatword order can be handledwithin an additive compositional framework, being parameter-
free and with a proven bias bound. Recently, Tian et al. (2016) further extended additive
composition to realizing a formal semantics framework.

Fromawider perspective, constructing and composing vector representations for linguistic
sequences have become one of the central techniques in NLP, and a lot of approaches have
been explored. Some of them, such as the vectors constructed from probability ratios and
composed by multiplications (Mitchell and Lapata 2010), might still be related to additive
composition because by taking logarithm, multiplications become additions and probability
ratios become PMIs. Other composition methods range from circular convolution (Mitchell
and Lapata 2010) to neural networks such as recursive autoencoder (Socher et al. 2011)
and long short-term memory (Melamud et al. 2016). Word vectors can be trained jointly
with composition parameters (Hashimoto et al. 2014; Pham et al. 2015), and training signals
range from surrounding context words (Takase et al. 2016) to supervised labels (Collobert
et al. 2011). We believe it is also important to investigate the theoretical aspects of these
approaches, which remain largely unclear. As for word vectors, some theoretical works have
been done on explaining the errors of dimension reductions of PMI vectors (Arora et al.
2016; Hashimoto et al. 2016).

Error bounds in approximation schemes have been extensively studied in statistical
learning theory (Vapnik 1995; Gnecco and Sanguineti 2008), and especially for neural net-
works (Niyogi and Girosi 1999; Burger and Neubauer 2001). Since we have formalized
compositional frameworks as approximation schemes, there is a good chance to apply the
theories of approximation error bounds to this problem, especially for advanced composi-
tional frameworks that have many parameters. Though the theories are usually established
on general settings, we see a great potential in using properties that are specific to natural
language data, as we demonstrate in this work.

There have been consistent efforts toward understanding stochastic behaviors of natural
language. Zipf’s Law (Zipf 1935) and its applications (Kobayashi 2014), non-parametric
Bayesian language models such as the Hierarchical Pitman–Yor Process (Teh 2006), and the
topic model (Blei 2012) might further help refine our theory. For example, it can be fruitful
to consider additive composition of topics.

123



Mach Learn

5 Experimental verification

In this section, we conduct experiments on the British National Corpus (BNC) (The BNC
Consortium 2007) to verify assumptions and predictions of our theory. The corpus contains
about 100M word tokens, including written texts and utterances in British English. For
constructing vector representations we use lemmatized words annotated in the corpus, and
for counting co-occurrences we use context windows that do not cross sentence boundaries.
The size of the context windows is 5 to each side for a target word, and 4 for a target phrase.
We extract all unigrams, ordered and unordered bigrams occurring more than 200 times
as targets. This results in 16,210 unigrams, 45,793 ordered bigrams and 45,398 unordered
bigrams. For the lexicon of context words we use the same set of unigrams.

5.1 Test of independence

In order to test the independence assumptions in our theory, we use Spearman’s ρ to measure
the correlations between random variables. Spearman’s ρ is the Pearson correlation between
rank values, and is invariant under transformations of any monotonic function. One has
−1 ≤ ρ ≤ −1, and if two variables are independent, ρ should be close to 0.

In our theory, Assumption (B1) of Theorem 1 states that pΥ
i,n and pΥ

j,n are independent

for each 1 ≤ i < j ≤ n. To test, we calculate the Spearman’s ρ between (i) pT
i,n and

pT
j,n , and (ii) p{ST }

i,n and p{ST }
j,n , where T and {ST } vary on the 16,210 unigrams and 45,398

unordered bigram samples respectively. Further, Assumption (C) of Theorem 1 states that
for each 1 ≤ i ≤ n, the random variables pS/T \S

i,n and pT/S\T
i,n are independent, whereas

F(pS/T \S
i,n +1/n) and F(p{ST }

i,n +1/n) have positive correlation. Thus,we check the Spearman’s

ρ between (iii) pS/T \S
i,n and pT/S\T

i,n , and (iv) pS/T \S
i,n and p{ST }

i,n , where {S, T } vary on the
45,389 unordered bigrams. The results are summarized in Fig. 5.

For most i- j pairs, Fig. 5(i)(ii) suggest that the correlations between pΥ
i,n and pΥ

j,n are

positive but quite weak (for 70% of the i- j pairs, the Spearman’s ρ between pT
i,n and pT

j,n

is 0.2 ± 0.05; and for 90% pairs the Spearman’s ρ between p{ST }
i,n and p{ST }

j,n is 0.1 ± 0.05).
As a comparison, when i and j indicate a pair of semantically related context words such
as black and white, the Spearman’s ρ between pT

i,n and pT
j,n is 0.40 and between p{ST }

i,n and

p{ST }
j,n is 0.31. Such examples only contribute to a negligible portion of the whole i- j pairs,

because semantically related pairs are rare.
On the other hand, Fig. 5(iii) shows that pS/T \S

i,n and pT/S\T
i,n have negative correlation for

most i ; the Spearman’s ρ for 66% of the pS/T \S
i,n -and-pT/S\T

i,n pairs is−0.2±0.1. In addition,

Fig. 5(iv) confirms that pS/T \S
i,n and p{ST }

i,n have positive correlation.

0        0.1        0.2        0.3 0        0.1        0.2        0.3 -0.3       -0.2      -0.1         0 0        0.1        0.2        0.3

(i)  and (ii)  and (iii)  and (iv)  and

Fig. 5 Distributions of Spearman’s ρ between different pairs of random variables
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Now, can the observed weak correlations support our assumptions on independence? To
test this, one may calculate a p-value as the probability of a Spearman’s ρ being farther

from 0 than the observation, making use of the fact that ρ
√

N−2
1−ρ2 approximately follows a

Student’s t-distribution (where N is the sample size). If the p-value is small, the Spearman’s
ρ should be considered too far from 0 to support independence. However, this test turns out
to be overly strict; for unordered bigrams (i.e. N = 45398), one needs |ρ| < 0.012 to make
p > 0.01. In other words, since the sample size is huge, even weak correlations among
samples can manifest as evidence for rejecting the independence as null hypothesis.

Nevertheless, our theoretical analysis is still valid, because the Law of Large Numbers
holds even for weakly correlated random variables, and the fact that pS/T \S

i,n and pT/S\T
i,n are

negatively correlated does not change the direction of our proven inequality. Therefore, our
independence assumptions are oversimplifications for language modeling, but the theoretical
conclusions and the bias bound are still likely true.

5.2 Generalized Zipf’s law

Consider the probability ratio pΥ
i,n/pi,n , where Υ can be a unigram, ordered bigram or

unordered bigram. Assumption (B) of Theorem 1 states that (pΥ
i,n/pi,n)’s (1 ≤ i ≤ n, n

fixed) can be viewed as independent sample points drawn from distributions that have a same
power law tail of index 1. We verify this assumption in the following.

A power law distribution has two parameters, the index α and the lower bound m of the
power law behavior. If a random variable X obeys a power law, the probability of x ≤ X
conditioned on m ≤ X is given by

P(x ≤ X |m ≤ X) = mα

xα
. (14)

For each fixed Υ , we estimate α and m from the sample pΥ
i,n/pi,n (1 ≤ i ≤ n), using

the method of Clauset et al. (2009). Namely, α is estimated by maximizing the likelihood of
the sample, and m is sought to minimize the Kolmogorov-Smirnov statistic, which measures
how well the theoretical distribution (14) fits the empirical distribution of the sample. After
m is estimated, we plot all pΥ

i,n/pi,n greater than m in a log-log graph, against their ranking.
If the sample points are drawn from a power law, the graph will be a straight line. Since
Assumption (B) states that the power law tail is the same for all Υ and has index 1, we should
obtain the same straight line for all Υ , and the slope of the line should be −1.

In Fig. 6, we summarize the graphs described above for all Υ . More precisely, we plot
the ranked probability ratios for each fixed Υ into the same log-log graph, and then show
the average and standard deviation of the x-th largest probability ratios across different Υ .
The figure shows that for each target type, most data points lie within a narrow stripe of
roughly the same shape, suggesting that the distribution of probability ratios for each fixedΥ

is approximately the same. In addition, the shape can be roughly approximated by a straight
line with slope −1, which suggests that the distribution is power law of index 1, verifying
Assumption (B).

As a concrete example, in Fig. 7 we show a log-log graph of the x-th largest probability
ratios ps

i,n/pi,n and pt
i,n/pi,n (1 ≤ i ≤ n), where s and t are two individual word targets.

The red points are cut off because their y values are lower than the boundaries of power law
behavior estimated from data. The blue and green points are the power law tails.

Further, to document this Zipfian behavior quantitatively, we conduct a χ2-test on the
distribution of pT

i,n/pi,n . In this test, we fix each i and categorize the values of X := pT
i,n/pi,n ,
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Fig. 6 For each x coordinate, the log–log graphs show the average value of the x-th largest probability ratios
pΥ

i,n/pi,n on y axis. The ranking is taken among 1 ≤ i ≤ n with Υ fixed, and the average is taken across
differentΥ that are unigrams, unordered bigrams, or ordered bigrams respectively. Standard deviation is shown
as error bar
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Fig. 7 Log–log plot of probability ratios against ranks, for two fixed targets

where T varies over the 16,210 unigram samples. According to Figs. 6 and 7, we assume
that X has a power law tail starting from X ≥ 24. Thus, we divide values of X into 5
categories, being X < 24, 24+k ≤ X < 25+k (k = 0, 1, 2), and X ≥ 27, respectively. We
count frequencies in each category and choose a parameter 1

24
≤ m ≤ 1

2 by minimizing

the χ2 statistic. The parameter α is fixed to 1. Then, the degree of freedom is calculated
as 5 − 1 − 1 = 3, and the χ2-test produces a p-value indicating how good the power law
hypothesis fit to the observed frequencies. We decide that the test is passed if p ≥ 0.0001.

Among all indices 1 ≤ i ≤ n, there are 16% distributions passing the test. A selection of
examples is shown in Table4. It turns out that many function words, such as “the” and “be”
cannot pass the test (with all values of X less than 24), because the occurring probabilities
of these words do not change much, whether or not conditioned on a target. An exception
is that several prepositions, such as “between” and “under” do pass. On the other hand, as
i becomes larger (i.e. pi,n becomes smaller), more of the distributions of pT

i,n/pi,n become
distorted, similar to the green dots in Fig. 7 which will fail the test. As Table4 suggests, no
obvious linguistic factor seems able to explain which word would pass. However, Fig. 6 still
confirms that the averaged behavior of these distributions obeys a power law.
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Table 4 χ2-tests on
distributions of X := pT

i,n/pi,n
i Word Frequencies p value

1 the 16210 0 0 0 0 <0.0001

2 be 16210 0 0 0 0 <0.0001

101 between 16167 29 14 0 0 0.0010

121 off 16173 29 6 2 0 0.0003

142 under 16169 28 9 3 1 0.0059

3075 evident 15992 194 23 1 0 <0.0001

3076 refugee 15914 176 77 27 16 0.0002

3077 button 15969 167 43 18 13 <0.0001

3078 belt 15920 206 54 24 6 <0.0001

3079 vegetable 15859 194 93 39 25 0.0126

3080 expertise 16053 124 29 4 0 <0.0001

0

0.1

0.2

0.3

0.4

10.50

Fig. 8 Plot of standard deviation of norms of natural phrase vectors against different λ

5.3 The choice of function F

In this section we experimentally verify the effects brought by different function F . Recall
that F is parameterized by λ as defined in Definition 10. In Sect. 2.4, we have shown that
E[F(X)2] < ∞ is a sufficient and necessary condition for the norms of natural phrase vectors
to converge to 1. If X has a power law tail of index α, then the condition for E[F(X)2] < ∞
is λ < α/2. So if we construct vector representations with different λ, only those vectors
satisfying λ < α/2 will have convergent norms. We verify this prediction first.

In Fig. 8, we plot the standard deviation of the norms of natural phrase vectors on y-axis,
against different λ values used for constructing the vectors. We tried λ = 0, 0.1, . . . , 1. As
the graph shows, as long as λ < 0.5, most of the norms lie within the range of 1 ± 0.1. In
contrast, the observed standard deviation quickly explodes as λ gets larger. In addition, the
transition point appears to be slightly larger than 0.5, which complies with the fact that the
observed α is slightly larger than 1 (i.e., the slope −1/α of the power law tails in Figs. 6 and
7 appear to be slightly more gradual than −1).

To confirm that the above observation represents a general principle across different cor-
pora, we also conduct experiments on English Wikipedia.6 We use WikiExtractor7 to extract

6 https://dumps.wikimedia.org.
7 https://github.com/attardi/wikiextractor.
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Fig. 9 Plot of standard deviation
of norms against number of
tokens in corpus

F(p) := p

F(p) := ln p

texts from a 2015-12-01 dump, and Stanford CoreNLP8 for sentence splitting. The corpus
has 1300M word tokens (about 13 times the size of BNC), and we use words in their surface
forms instead of lemmas. We extract words and unordered bigrams which occur more than
500 times, resulting in about 85Kwords and 264K bigrams. Then, we additionally make two
smaller corpora by uniformly sampling 10%and 1% sentences inWikipedia. For each corpus,
we construct natural phrase vectors and calculate the standard deviation of their norms as
previous. The results are shown in Fig. 9. Again, we found that when one sets F(p) := ln p,
the standard deviation is around 0.1; in contrast when F(p) := p, the standard deviation is
above 0.5. As the corpus increases, the standard deviation slightly decreases; at Wikipedia’s
full size, the standard deviation for F(p) := ln p descends below 0.095.

Next, we investigate how F affects the Euclidean distance B{st}
n . In Fig. 10, we plot

B{st}
n on y-axis, against

√
1

2
(π2

s/t\s + π2
t/s\t + πs/t\sπt/s\t ) on x-axis,

for every unordered bigram {st}. We tried four different choices of function F , as indicated
above the graphs. For the choices (a) F(p) := ln p and (b) F(p) := √

p, we verify the upper
bound y ≤ x as suggested by Claim 1. In contrast, the approximation errors seem no longer
bounded when (c) F(p) := p or (d) F(p) := p ln p.

In Sect. 6 we will extrinsically evaluate the additive compositionality of vector represen-
tations, and find F a crucial factor there; while F(p) := ln p and F(p) := √

p evaluate
similarly well, F(p) := p and F(p) := p ln p do much worse. This suggests that our bias
bound indeed has the power of predicting additive compositionality, demonstrating the use-
fulness of our theory. In contrast, it seems that the average level of approximation errors
for observed bigrams (shown as green dashed lines in Fig. 10) is less predictive, as the poor
choices F(p) := p and F(p) := p ln p actually have lower average error levels. This empha-
sizes a particular caveat that, choosing composition operations by minimizing the observed
average error may not always be justifiable. Here if we consider the function F as a parameter
in additive composition, and choose the one with the lowest average error observed, we will
get the worst setting F(p) := p. Therefore, we see how important a learning theory for
composition research is.

8 http://stanfordnlp.github.io/CoreNLP/.
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Fig. 10 Approximation errors for unordered bigrams observed in BNC. The choice of F is shown above each
graph. The theoretical upper bound y ≤ x is drawn as red solid lines in (a) and (b). The average error levels
are drawn as green dashed lines (Color figure online)

5.4 Handling word order in additive composition

For vector representations constructed from the Near–far Contexts (Sect. 3.2), we have a
similar bias bound given by Claim 3. In this section, we experimentally verify the bound and
qualitatively show that the additive composition of Near–far Context vectors can be used for
assessing semantic similarities between ordered bigrams.

In Figs. 11 and 12, we plot

(a) Bst
n and (b) ‖wts

n − 1

2
(ws•

n + w•t
n )‖ on y-axis,

against

√
1

2
(π2

s•\t + π2
s/•t + πs•\tπs/•t ) on x-axis,

for every ordered bigram st . We tried two settings of F , namely F(p) := ln p (Fig. 11)
and F(p) := √

p (Fig. 12). In both cases, the approximation errors in (a) are bounded by
y ≤ x (red solid lines) as suggested by Claim 3. In contrast, the approximation errors for

Fig. 11 Near–far context, F(p) := ln p
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Fig. 12 Near–far context, F(p) := √
p

order-reversed bigrams exceed this bound, showing that the additive composition of Near–far
Context vectors actually recognizes word order.

In Table5, we show the 8 nearest word pairs for each of 8 ordered bigrams, measured
by cosine similarities between additive compositions of Near–far Context vectors. More
precisely, for word pairs “s1 t1” and “s2 t2”, we calculate the cosine similarity between
1
2 (v

s1• + v•t1) and 1
2 (v

s2• + v•t2), where vs• and v•t are normalized 200-dimensional SVD
reductions of ws•

n and w•t
n , respectively, with F(p) := √

p. The table shows that additive
composition of Near–far Context vectors can indeed represent meanings of ordered bigrams,
for example, “pose problem” is near to “arise dilemma” but not to “dilemma arise”, and
“problem pose” is near to “difficulty cause” but not to “cause difficulty”. It is also noteworthy
that “not enough” is similar to “always want”, showing somedegree of semantic composition-
ality beyond word level. We believe this ability of computing meanings of arbitrary ordered
bigrams is already highly useful, because only a few bigrams can be directly observed from
real corpora.

5.5 Dimension reduction

In this section, we verify our prediction in Sect. 3.3 that vectors trained by SVD preserve our
bias boundmore faithfully thanGloVe and SGNS. In Fig. 13, we use normalized word vectors
vt that are constructed from the distributional vectors wt

n by reducing to 200 dimensions
using different reduction methods. We use SVD in (a) and (b), with F(p) := ln p in (a) and
F(p) := √

p in (b). The GloVe model is shown in (c) and SGNS in (d), both of them using
F(p) := ln p. For each unordered bigram {st} we plot

‖v{st} − 1

2
(vs + vt )‖ on y-axis, against

√
1

2
(π2

s/t\s + π2
t/s\t + πs/t\sπt/s\t ) on x-axis.

The graphs show that vectors trained by SVD still largely conform to our bias bound y ≤ x
(red solid lines), but vectors trained byGloVe or SGNSno longer do.Our extrinsic evaluations
in Sect. 6 also show that SVD might perform better than GloVe and SGNS.
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Table 5 Top 8 similar word pairs, assessed by cosine similarities between additive compositions of Near–far
Context vectors

pose problem problem pose tax rate rate tax

solve dilemma difficulty solve income price income inflation

arise dilemma difficulty cause income inflation premium taxation

solve difficulty difficulty tackle taxation premium premium inflation

solve concern tendency solve income premium price income

cause dilemma solution cause inflation income taxation premium

tackle difficulty dilemma cause taxation price inflation income

dilemma serious shortage solve premium taxation earnings taxation

confront difficulty consequence solve inflation premium premium income

high price price high not enough enough not

low rate rate low really sufficient too never

low premium level low insufficient bother really never

low output value low still bother too really

low value cost low always want ought too

low cost premium low always bother too actually

low wage output low really prepared too always

low level inflation low really unwilling sufficient never

low margin market low really obliged quite never

Fig. 13 Approximation errors for different dimension reduction methods

6 Extrinsic evaluation of additive compositionality

In this section, we test additive composition on human annotated data sets to see if our
theoretical predictions correlate with human judgments. We conduct a phrase similarity task
and a word analogy task.

6.1 Phrase similarity

In a data set9 created byMitchell andLapata (2010), phrase pairs are annotatedwith similarity
scores. Each instance in the data is a (phrase1, phrase2, similarity) triplet, and each phrase
consists of two words. The similarity score is annotated by humans, ranging from 1 to
7, indicating how similar the meanings of the two phrases are. For example, one annotator

9 http://homepages.inf.ed.ac.uk/s0453356/.
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Fig. 14 Distributions of how many times the phrases in the data occur as bigrams in BNC. The y-axis shows
percentage and x-axis shows frequency range
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Fig. 15 Top 800 singular values calculated by SVD. The y-axis shows singular value and x-axis shows rank.
Different y-scales are used for different settings

assessed the similarity between “vast amount” and “large quantity” as 7 (the highest), and the
similarity between “hear word” and “remember name” as 1 (the lowest). Phrases are divided
into three categories: Verb-Object, Compound Noun, and Adjective-Noun. Each category
has 108 phrase pairs, and they are annotated by 18 human participants (i.e., 1,944 instances
in each category). Using this data set, we can compare the human ranking of phrase similarity
with the one calculated from cosine similarities between vector-based compositions. We use
Spearman’s ρ to measure how correlated the two rankings are.

Vector representations are constructed from BNC, with the same settings described in
Sect. 5. We plot in Fig. 14 the distributions of how many times the phrases in the data set
occur as bigrams in BNC. The figure indicates that a large portion of the phrases are rare or
unseen as bigrams, so their meanings cannot be directly assessed as natural vectors from the
corpus. Therefore, the data is suitable for testing compositions of word vectors.

We reduce the high dimensional distributional representations into 200-dimensional and
normalize the vectors. The dimension 200 is selected by observing the top 800 singular
values calculated by SVD. As illustrated in Fig. 15, the decrease of singular values flattens
to a constant rate at a rank of about 200. This suggests that the most characteristic features in
the vector representations are projected into 200 dimensions. In our preliminary experiments,
we have confirmed that 200-dimension performs better than 100-dimension, 500-dimension
or no dimension reduction.

For trainingword embeddings, we use the random projection algorithm (Halko et al. 2011)
for SVD, and Stochastic Gradient Descent (SGD) (Bottou 2012) for SGNS and GloVe.
Since these are randomized algorithms, we run each test 20 times and report the mean
performance with standard deviation. We tune SGD learning rates by checking convergence
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Table 6 Spearman’s ρ in the phrase similarity task

Verb-object Compound noun Adjective-noun

Ordinary-id-SVD .4029 ± .0009 .4275 ± .0009 .4160 ± .0009

Ordinary-xlnx-SVD .4204 ± .0011 .4728 ± .0013 .4511 ± .0012

Ordinary-ln-SVD .4369 ± .0022 .5187 ± .0016 .4604 ± .0033

Ordinary-sqrt-SVD .4318 ± .0019 .5051 ± .0020 .4790 ± .0018

Nearfar-ln-SVD .4204 ± .0018 .5135 ± .0020 .4491 ± .0028

Nearfar-sqrt-SVD .4359 ± .0020 .5193 ± .0024 .4873 ± .0011

SGNS .4273 ± .0035 .4977 ± .0025 .5125 ± .0032

GloVe .4014 ± .0046 .4986 ± .0053 .4308 ± .0062

Tensor Product .4092 ± .0033 .4801 ± .0035 .4348 ± .0048

Upper Bound .691 .693 .715

Muraoka et al. .430 .481 .469

Deep Neural .305 .385 .207

Bold values are significant (p < .1) assuming the test results follow Gaussian distribution

of the objectives, and get slightly better results than the default training parameters set in the
software of SGNS10 and GloVe.11

As pointed out by Levy et al. (2015), there are other detailed settings that can vary in
SGNS and GloVe. We make these settings close enough to be comparable but emphasize the
differences of loss functions. More precisely, we use no subsampling and set the number of
negative samples to 2 in SGNS, and use the default loss function in GloVe with the cutoff
threshold set to 10. In addition, the default implementations of both SGNS and GloVe weigh
context words by a function of distance to their targets, which we disable (i.e. equal weights
are used for all context words), so as to make it compatible with our problem setting.

The test results are shown inTable6.We compare different settings of function F , Ordinary
and Near–far Contexts, and different dimension reductions. When using ordinary contexts
and SVD reduction, we find that the functions ln (F(p) := ln p) and sqrt (F(p) := √

p)
perform similarly well, whereas id (F(p) := p) and xlnx (F(p) := p ln p) are much
worse, confirming our predictions in Sect. 3.1. As for Near–far Context vectors (Sect. 3.2),
we find that the Nearfar-sqrt-SVD setting has a high performance, demonstrating improve-
ments brought by Near–far to additive composition. However, we note that Nearfar-ln-SVD
is worse. One reason could be that the function ln emphasizes lower co-occurrence prob-
abilities, which combined with Near–far labels could make the vectors more prone to data
sparseness; or correlatively, some important syntactic markers might be obscured because
they occur in high frequency. Finally, we note that SVD is consistently good and usually
better than GloVe and SGNS, which supports our arguments in Sect. 3.3.

We report some additional test results for reference. In Table6, the “Tensor Product”
row shows the results of composing Ordinary-ln-SVD vectors by tensor product instead of
average,whichmeans that the similarity between two phrases “s1 t1” and “s2 t2” is assessed by
taking product of the word cosine similarities cos(s1, s2) ·cos(t1, t2). The numbers are worse
than additive composition, suggesting that a similar phrase might be something more than a
sequence of individually similar words. In the “Upper Bound” row, we show the best possible

10 https://code.google.com/p/word2vec/.
11 http://nlp.stanford.edu/projects/glove/.
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Spearman’s ρ for this task, which are less than 1 because there are disagreements between
human annotators. Compared to these numbers, we find that the performance of additive
composition on compound nouns is remarkably high. Furthermore, in “Muraoka et al.” we
cite the best results reported inMuraoka et al. (2014), which has tested several compositional
frameworks. In “Deep Neural”, we also test additive composition of word vectors trained
by deep neural networks (normalized 200-dimensional vectors trained by Turian et al. 2010,
using the model of Collobert et al. 2011). These results cannot be directly compared to each
other because they construct vector representations from different corpora; but we can fairly
say that additive composition is still a powerful method for assessing phrase similarity, and
linear dimension reductions might be more suitable for training additively compositional
word vectors than deep neural networks. Therefore, our theory on additive composition is
about the state-of-the-art.

6.2 Word analogy

Word analogy is the task of solving questions of the form “a is to b as c is to __?”, and an
elegant approach proposed by Mikolov et al. (2013b) is to find the word vector most similar
to vb − va + vc . For example, in order to answer the question “man is to king as woman
is to __?”, one needs to calculate vking − vman + vwoman and find out its most similar word
vector, which will probably turn out to be vqueen, indicating the correct answer queen.

As pointed out by Levy and Goldberg (2014a), the key to solving analogy questions is
the ability to “add” (resp. “subtract”) some aspects to (resp. from) a concept. For example,
king is a concept of human that has the aspects of being royal and male. If we can “subtract”
the aspect male from king and “add” the aspect female to it, then we will probably get
the concept queen. Thus, the vector-based solution proposed by Mikolov et al. (2013b) is
essentially assuming that “adding” and “subtracting” aspects can be realized by adding and
subtracting word vectors. Why is this assumption admissible?

We believe this assumption is closely related to additive compositionality. Because, if
an aspect is represented by an adjective (e.g. male) and a concept is represented by a noun
(e.g. human), we can usually “add” the aspect to the concept by simply arranging the adjective
and the noun to form a phrase (e.g. male human). Therefore, as the meaning of the phrase
can be calculated by additive composition (e.g. vmale + vhuman), we have indeed realized the
“addition” of aspects by addition of word vectors. Specifically, since man ≈ male human,
king ≈ royal male human, woman ≈ female human and queen ≈ royal female human, we
expect the following by additive composition of phrases.

vman ≈ vmale + vhuman

vking ≈ vroyal + vmale + vhuman

vwoman ≈ vfemale + vhuman

vqueen ≈ vroyal + vfemale + vhuman

Here, “≈” denotes proximity between vectors in the sense of cosine similarity. From these
approximate equations, we can imply that vking−vman+vwoman ≈ vroyal+vfemale+vhuman ≈
vqueen, which solves the analogy question.

Therefore, we expect word analogy task to serve as an extrinsic evaluation for additive
compositionality as well. For this reason, we conduct word analogy task on the standard
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Table 7 Accuracy (%) in the word analogy task

id-SVD xlnx-SVD ln-SVD sqrt-SVD SGNS GloVe

Google 19.43 ± .06 32.47 ± .10 52.04 ± .36 51.28 ± .25 45.16 ± .44 48.39 ± .44

Msr 17.36 ± .06 33.85 ± .12 66.67 ± .26 60.93 ± .25 55.56 ± .30 65.05 ± .55

Bold values are significant (p < .1) assuming the test results follow Gaussian distribution

Msr12 (Mikolov et al. 2013b) and Google13 (Mikolov et al. 2013a) data sets. Each instance
in the data is a 4-tuple of words subject to “a is to b as c is to d”, and the task is to find out d
from a, b and c. We train word vectors with the same settings described in Sect. 5, but using
surface forms instead of lemmatized words in BNC. Tuples with out-of-vocabulary words
are removed from data, which results in 4382 tuples in Msr and 8906 in Google.14

The test results are shown in Table7. Again, we find that ln and sqrt perform similarly
well but id and xlnx are worse, confirming that the choice of function F can drastically
affect performance on word analogy task as well, which we believe is related to additive
compositionality. In addition, we confirm that SVD can perform better than SGNS and
GloVe, which gives more support to our conjecture that vectors trained by SVD might be
more compatible to additive composition.

7 Conclusion

In this article, we have developed a theory of additive composition regarding its bias. The
theory has explained why and how additive composition works, making useful suggestions
about improving additive compositionality, which include the choice of a transformation
function, the awareness of word order, and the dimension reduction methods. Predictions
made by our theory have been verified experimentally, and shown positive correlations with
human judgments. In short, we have revealed the mechanism of additive composition.

However, we note that our theory is not “proof” of additive composition being a “good”
compositional framework. As a generalization error bound usually is in machine learning
theory, our bound for the bias does not show if additive composition is “good”; rather, it
specifies some factors that can affect the errors. If we have generalization error bounds for
other composition operations, a comparison between such bounds can bring useful insights
into the choices of compositional frameworks in specific cases. We expect our bias bound to
inspire more results in the research of semantic composition.

Moreover, we believe this line of theoretical research can be pursued further. In com-
putational linguistics, the idea of treating semantics and semantic relations by algebraic
operations on distributional context vectors is relatively new (Clarke 2012). Therefore, the
relation between linguistic theories and our approximation theory of semantic composi-
tion is left largely unexplored. For example, the intuitive distinction between compositional
(e.g. high price) and non-compositional (e.g. white lie) phrases is currently ignored in our
theory. Our bias bound treats both cases by a single collocation measure. Can one improve
the bound by taking account of this distinction, and/or other kinds of linguistic knowledge?
This is an intriguing question for future work.

12 http://research.microsoft.com/en-us/projects/rnn/.
13 https://code.google.com/p/word2vec/.
14 These are about half the size of the original data sets.
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Appendix 1: Proof of lemmas

In this appendix, we prove Lemma 1 and Lemma 2 in Sect. 2.3.
In order to prove Lemma 1, we first note the following equations:

F
(
x + (npi,n)−1

)− F
(
β + (npi,n)−1

)

(
1 + (βnpi,n)−1

)−1+λ
≥ F(x) − F(β) (15)

F
(
x + (npi,n)−1

)− F
(
β + (npi,n)−1

)

(
1 + (βnpi,n)−1

)λ = F
( x + (npi,n)−1

1 + (βnpi,n)−1

)
− F(β) (16)

Equation (15) can be obtained by analyzing the derivatives F ′(x) = x−1+λ, and Eq. (16)
immediately follows from the identity zλ(F(x) − F(y)) = F(zx) − F(zy).

Proof of Lemma 1(a)(b) We calculate ei,n as follows. By definition,

ei,n = E

[ Yi,n√
ϕi,n

IX≤β

]
+ E

[ Yi,n√
ϕi,n

IX≥β

]
.

Then, note that Yi,n ≤ 0 when X ≤ β, and by (15) we have

0 ≥ E

[ Yi,n√
ϕi,n

IX≤β

]
≥ E

[(
F(X) − F(β)

)
IX≤β

]

√
1 + (βnpi,n)−1

. (17)

From the condition E[F(X)2] < ∞ we have E[|F(X)|] < ∞, so

(17) ≥ −E[|F(X)|] − |F(β)| and (17) → 0 when npi,n → 0. (18)

Next, when X ≥ β we have Yi,n ≥ 0, and by (16) we get

0 ≤ E

[ Yi,n√
ϕi,n

IX≥β

]
=
√
1 + (βnpi,n)−1 · E

[(
F
( X + (npi,n)−1

1 + (βnpi,n)−1

)
− F(β)

)
IX≥β

]
.

(19)
ByAssumption (B2), X obeys a power law at X ≥ β, so if we put Z := X −β, the probability
density of Z is given by

− dP(z ≤ Z) = ξ dz

(z + β)2
≤ ξ dz√

z(z + β)3/2
(where z > 0).

Thus,

(19) ≤
∫ ∞

0

F
( z

1 + (βnpi,n)−1 + β
)

− F(β)

√
z

1 + (βnpi,n)−1

· ξ dz

(z + β)3/2
. (20)
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The condition E[F(X)2] < ∞ implies λ < 0.5, so
F(u + β) − F(β)√

u
→ 0 at u → ∞. In

addition the function is smooth on [0,∞), so it can be bounded by a constant M . Therefore,

(20) ≤
∫ ∞

0
M · ξ dz

(z + β)3/2
< ∞ and (20) → 0 when npi,n → 0. (21)

The limit above is a consequence of Lebesgue’s Dominated Convergence Theorem.
Combining (18) and (21), we have proven Lemma 1(a)(b). ��

Proof of Lemma 1(c)(d) We calculate E[Y 2
i,n/ϕi,n] as follows. By definition,

E[Y 2
i,n/ϕi,n] = E

[Y 2
i,n

ϕi,n
IX≤β

]
+ E

[Y 2
i,n

ϕi,n
IX≥β

]
.

By (15) we have

E

[Y 2
i,n

ϕi,n
IX≤β

]
≤ E

[(
F(X) − F(β)

)2
IX≤β

]

1 + (βnpi,n)−1 . (22)

Then, from the condition E[F(X)2] < ∞, we have

(22) is uniformly integrable and (22) → 0 when npi,n → 0. (23)

Next, by (16) we get

E

[Y 2
i,n

ϕi,n
IX≥β

]
= (1 + (βnpi,n)−1) · E

[(
F
( X + (npi,n)−1

1 + (βnpi,n)−1

)
− F(β)

)2
IX≥β

]

. (24)

By Assumption (B2), X obeys a power law at X ≥ β, so if we put Z := X − β

1 + (βnpi,n)−1 ,

the probability density of Z is given by

− dP(z ≤ Z) = 1

1 + (βnpi,n)−1 · ξ dz
(
z + β

1 + (βnpi,n)−1

)2

≤ 1

1 + (βnpi,n)−1 · ξ dz

z2

(where z > 0).

Thus,

(24) ≤
∫ ∞

0

(
F(z + β) − F(β)

)2 · ξ dz

z2
.

The condition E[F(X)2] < ∞ implies λ < 0.5, so the above integral is finite. The integral
is independent of i and n, so (24) is uniformly integrable; in addition, when npi,n → 0 we

have
(
z + β

1 + (βnpi,n)−1

)2 → z2, so

lim
npi,n→0

(24) =
∫ ∞

0

(
F(z + β) − F(β)

)2 · ξ dz

z2
(25)

by Lebesgue’s Dominated Convergence Theorem.
Combining (23) and (25), we have proven Lemma 1(c)(d). ��
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Proof of Lemma 2 Firstly, by the definition of ϕi,n we have

n−1+2λ · ϕi,n = (npi,n + 1/β
)−1+2λ · pi,n .

So Lemma 2(a) immediately follows. To prove Lemma 2(b), we simply apply Assumption
(A) to the above.

To prove Lemma 2(c), we calculate

n−1+2λ ln n

n
δ ln n∑

i=1

ϕi,n =
n

δ ln n∑

i=1

(
npi,n + 1/β

)−1+2λ · pi,n ln n

≤
n

δ ln n∑

i=1

(npi,n)−1+2λ · pi,n ln n

≈
( n

ln n

)−1+2λ
n

δ ln n∑

i=1

i−2λ (by Assumption (A))

≈
( n

ln n

)−1+2λ · 1

1 − 2λ

( n

δ ln n

)1−2λ

= δ−1+2λ

1 − 2λ
,

so the required Mδ exists.
To prove Lemma 2(d), we note that by Eq. (7),

n

δ ln n
≤ i ≤ n ⇒ npi,n ≤ δ.

Hence,

n−1+2λ ln n
n∑

n
δ ln n ≤i

ϕi,n =
n∑

n
δ ln n ≤i

(
npi,n + 1/β

)−1+2λ · pi,n ln n

≥
n∑

n
δ ln n ≤i

(δ + 1/β)−1+2λ · pi,n ln n

≈ (δ + 1/β)−1+2λ
n∑

n
δ ln n ≤i

i−1 (by Assumption (A))

≈ (δ + 1/β)−1+2λ ln
(
δ ln n

)→ ∞ (when n → ∞).

Therefore, Lemma 2(d) is proven. ��

Appendix 2: The loss function of SGNS

In this appendix, we discuss the loss function of SGNS. The model is originally proposed as
an ad hoc objective function using the negative sampling technique (Mikolov et al. 2013a),
without any explicit explanation on what is optimized and what is the loss. It is later shown
that SGNS is a factorization of the shifted-PMI matrix (Levy and Goldberg 2014b), but the
loss function for this factorization remains unspecified. Here, we give a re-explanation of the
SGNS model, with the loss function explicitly stated.
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Noise contrastive estimation

The original objective function of SGNS is proposed as an adaptation of the Noise Con-
trastive Estimation (NCE) method, but in fact SGNS is using NCE without any adaptation.
NCE (Gutmann and Hyvärinen 2012) is a method for solving the classical problem that,
given a sample (xi )

N
i=1 (wherein xi ∈ X ) drawn from an unknown probability distribution

Pdata, and a function family f (·; θ) : X → R≥0 parameterized by θ , to find the optimal
θ∗ such that f (x; θ∗) approximates the distribution Pdata(x) best. An alternative to NCE
is the Maximum Likelihood Estimation (MLE), in which θ∗ is chosen as to maximize the
log-likelihood of the sample (xi )

N
i=1, with respect to the constraint that f (·; θ∗) should be a

probability:

θ∗
MLE = argmax

θ

N∑

i=1

ln f (xi ; θ), where
∑

x∈X
f (x; θ) = 1.

For MLE, the constraint
∑

x∈X f (x; θ) = 1 is important, because f (x; θ) can tend to
arbitrarily large if we maximize the log-likelihood without the constraint. NCE finds θ∗ in
a different way. It firstly mixes (xi ) with a noise sample drawn from a known distribution
Pnoise, each data point xi mixed with k noise points yi,1, . . . , yi,k ∼ Pnoise. Hence,

P(x is data | x) = Pdata(x)

Pdata(x) + kPnoise(x)
, (26)

which gives the probability of a given point x ∈ X being a data point. Pdata is unknown
in (26), so we approximate P(x is data | x) by g(x; θ) as below:

g(x; θ) := f (x; θ)

f (x; θ) + kPnoise(x)
. (27)

Then, NCE maximizes the log-likelihood of “xi being data and yi,1, . . . , yi,k being noise”:

θ∗
NCE = argmax

θ

N∑

i=1

(
ln g(xi ; θ) +

k∑

j=1

ln(1 − g(yi, j ; θ))
)
. (28)

The most important point of NCE is that, f (x; θ) will not tend to infinity even we max-
imize (28) without the constraint

∑
x∈X f (x; θ) = 1. This is because making f (x; θ)

large will accordingly make 1 − g(yi, j ; θ) small, which will decrease the likelihood of
“yi,1, . . . , yi,k being noise”. No longer necessary to repeatedly calculate

∑
x∈X f (x; θ)

during parameter update, NCE usually results in efficient training algorithms.

The Skip-Gram with negative sampling model

Let pt
i be the co-occurrence probability of the i-th word, conditioned on it being in the context

of a target word t . SGNS approximates pt
i by the function family

f (i, t;u, v) := exp(ui · vt + ln(kpnoisei )),

using NCE to optimize parameters. Here, u and v are parameters of the function family,
whose columns are vectors ui and vt , corresponding to the i-th context word and the word
target t , respectively. The training data C is a collection of co-occurring context-target word
pairs. On the other hand, k and pnoisei are constants in the definition of the function family,
where k is the number of noise points drawn for each training instance, and pnoisei is the
probability value of the i-th context word being drawn from the noise distribution Pnoise.
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Substituting the above f (i, t;u, v) into (27), we get

g(i, t;u, v) = exp(ui · vt + ln(kpnoisei ))

exp(ui · vt + ln(kpnoisei )) + kpnoisei

= σ(ui · vt ),

where σ(x) = 1/
(
1 + exp(−x)

)
is the sigmoid function.

Substituting the obtained g(i, t;u, v) into (28), we get

(u, v)∗NCE = argmax
u,v

∑

(i,t)∈C

(
ln σ(ui · vt ) +

∑

y∼Pnoise

ln(1 − σ(uy · vt ))
)

which is exactly the objective function of SGNS proposed in Mikolov et al. (2013a).
Since SGNS is using f (i, t;u, v) = exp(ui · vt + ln(kpnoisei )) to approximate pt

i , it is
using ui ·vt to approximatewt

i := ln pt
i − ln(kpnoisei ). Thiswt

i is in the form of vector entries
of distributional representations as given in Definition 4. Thus, SGNS can be viewed as a
dimension reduction of the distributional representations we consider in this article.

Proof of Claim 4 To calculate its loss function, we consider the objective of SGNS:

O(u, v) :=
∑

(i,t)∈C

(
ln σ(ui · vt ) +

∑

y∼Pnoise

ln(1 − σ(uy · vt ))
)
.

The sum is taken across all context-target pairs in C . We regroup the summands by each
distinct target, and note that conditioned on an occurrence of target t , the probability for
one to encounter the i-th context word co-occurring in the training data is pt

i , whereas the
expected times for one to draw the context word from noise is given by kpnoisei . So we have

O(u, v) =
∑

t

C(t)
∑

i

(
pt

i ln σ(ui · vt ) + kpnoisei ln(1 − σ(un · vt ))
)

where C(t) is the occurrence count of t . Now, we know that the optimal O(u, v) is achieved
at ui · vt = wt

i , so we define

M :=
∑

t

C(t)
∑

i

(
pt

i ln σ(wt
i ) + kpnoisei ln(1 − σ(wt

i ))
)
.

Then, to maximize O(u, v) is to minimize M − O(u, v), and by some calculation we obtain

M − O(u, v) =
∑

t

C(t)
∑

i

Dφ

(
ui · vt + ln(kpnoisei ), wt

i + ln(kpnoisei )
)
,

where Dφ(p, q) := φ(p)−φ(q)−φ′(q)(p −q) is the Bregman divergence associated with
the convex function

φ(x) = (pt
i + kpnoisei ) ln(exp(x) + kpnoisei ).

This is the loss function given in Claim 4. The limit of Dφ at k → +∞ is easily derived. ��

References

Arora, S., Li, Y., Liang, Y., &Ma, T. (2016). A latent variable model approach to pmi-based word embeddings.
Transactions of the Association for Computational Linguistics, 4, 385–399.

Banea, C., Chen, D., Mihalcea, R., Cardie, C., & Wiebe, J. (2014). Simcompass: Using deep learning word
embeddings to assess cross-level similarity. In: Proceedings of SemEval.

123



Mach Learn

Baroni, M., & Zamparelli, R. (2010). Nouns are vectors, adjectives are matrices: Representing adjective-noun
constructions in semantic space. In: Proceedings of EMNLP.

Blacoe, W., & Lapata, M. (2012). A comparison of vector-based representations for semantic composition.
In: Proceedings of EMNLP.

Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77–84.
Boleda, G., Baroni, M., Pham, T.N., &McNally, L. (2013). Intensionality was only alleged: On adjective-noun

composition in distributional semantics. In: Proceedings of IWCS.
Bottou, L. (2012). Stochastic gradient descent tricks. In G.Montavon, G. B. Orr, &K. R.Müller (Eds.),Neural

Networks: Tricks of the Trade. Berlin: Springer.
Burger, M., & Neubauer, A. (2001). Error bounds for approximation with neural networks. Journal of Approx-

imation Theory, 112(2), 235–250.
Church, K. W., & Hanks, P. (1990). Word association norms, mutual information, and lexicography. Compu-

tational Linguistics, 16(1), 22–29.
Clarke, D. (2012). A context-theoretic framework for compositionality in distributional semantics. Computa-

tional Linguistics, 38(1), 41–47.
Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM

Review, 51(4), 661–703.
Coecke, B., Sadrzadeh, M., & Clark, S. (2010). Mathematical foundations for a compositional distributional

model of meaning. Linguistic Analysis, 36(1), 345–384.
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language

processing (almost) from scratch. Journal of Machine Learning Research, 12, 2493–2537.
Corral, A., Boleda, G., & i Cancho, R. E. (2015). Zipf’s law for word frequencies: Word forms versus lemmas

in long texts. PLoS One, 10(7), 1–23.
Dagan, I., Pereira, F., & Lee, L. (1994). Similarity-based estimation of word cooccurrence probabilities. In:

Proceedings of ACL.
Dinu, G., Pham, N.T., & Baroni, M. (2013). General estimation and evaluation of compositional distribu-

tional semantic models. In: Proceedings of the Workshop on Continuous Vector Space Models and their
Compositionality.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12, 2121–2159.

Foltz, P.W., Kintsch,W.,&Landauer, T. K. (1998). Themeasurement of textual coherencewith latent semantic
analysis. Discourse Process, 15, 285–307.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural
Computation, 4(1), 1–58.

Gnecco, G., & Sanguineti, M. (2008). Approximation error bounds via rademachers complexity. Applied
Mathematical Sciences, 2(4), 153–176.

Grefenstette, E., & Sadrzadeh, M. (2011). Experimental support for a categorical compositional distributional
model of meaning. In: Proceedings of EMNLP.

Guevara, E. (2010). A regression model of adjective-noun compositionality in distributional semantics. In:
Proceedings of the Workshop on GEometrical Models of Natural Language Semantics.

Gutmann, M. U., & Hyvärinen, A. (2012). Noise-contrastive estimation of unnormalized statistical models,
with applications to natural image statistics. Journal of Machine Learning Research, 13(1), 207–361.

Ha LQ, Sicilia-Garcia, E.I., Ming, J., & Smith, F.J. (2002). Extension of zipf’s law to words and phrases. In:
Proceedings of Coling.

Halko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decompositions. SIAM Review, 53(2), 217–288.

Harris, Z. S. (1954). Distributional structure. Word, 10, 146–162.
Hashimoto, K., Stenetorp, P., Miwa, M., & Tsuruoka, Y. (2014). Jointly learning word representations and

composition functions using predicate-argument structures. In: Proceedings of EMNLP.
Hashimoto, T., Alvarez-Melis, D., & Jaakkola, T. (2016). Word embeddings as metric recovery in semantic

spaces. Transactions of the Association for Computational Linguistics, 4, 273–286.
Iyyer, M., Manjunatha, V., Boyd-Graber, J., & III, H.D. (2015). Deep unordered composition rivals syntactic

methods for text classification. In: Proceedings of ACL.
Kobayashi, H. (2014), Perplexity on reduced corpora. In: Proceedings of ACL.
Landauer, T. K. (2002). On the computational basis of learning and cognition: Arguments from LSA. In N.

Ross (Ed.), The Psychology of Learning and Motivation (Vol. 41). Cambridge: Academic Press.
Landauer, T. K., & Dumais, S. T. (1997). A solution to platos problem: The latent semantic analysis theory of

acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211.

123



Mach Learn

Landauer, T.K., Laham, D., Rehder, B., & Schreiner, M.E. (1997). How well can passage meaning be derived
without using word order? a comparison of latent semantic analysis and humans. In: Proceedings of
Annual Conference of the Cognitive Science Society.

Lebret, R., & Collobert, R. (2014). Word embeddings through Hellinger PCA. In: Proceedings of EACL.
Levy, O., & Goldberg, Y. (2014a). Linguistic regularities in sparse and explicit word representations. In:

Proceedings of CoNLL.
Levy, O., & Goldberg, Y. (2014b). Neural word embedding as implicit matrix factorization. In: Advances in

Neural Information Processing Systems (NIPS) 27, 2177–2185.
Levy, O., Goldberg, Y., &Dagan, I. (2015). Improving distributional similarity with lessons learned fromword

embeddings. Transactions of the Association for Computational Linguistics, 3, 211–225.
Melamud, O., Goldberger, J., & Dagan, I. (2016). context2vec: Learning generic context embedding with

bidirectional lstm. In: Proceedings of CoNLL.
Mikolov, T., Ilya, S., Chen, K., Corrado, G., & Dean, J. (2013a). Distributed representations of words and

phrases and their compositionality. In NIPS’13 Proceedings of the 26th International Conference on
Neural Information Processing Systems (pp. 3111–3119).

Mikolov, T., Yih, Wen-tau, & Zweig, G. (2013b). Linguistic regularities in continuous space word represen-
tations. In: Proceedings of NAACL-HLT.

Miller, G. A., & Charles, W. G. (1991). Contextual correlates of semantic similarity. Language and Cognitive
Processes, 6(1), 1–28.

Mitchell, J., &Lapata,M. (2008). Vector-basedmodels of semantic composition. In:Proceedings of ACL-HLT.
Mitchell, J., & Lapata, M. (2010). Composition in distributional models of semantics. Cognitive Science,

34(8), 1388–1429.
Montemurro, M. A. (2001). Beyond the Zipf–Mandelbrot law in quantitative linguistics. Physica A: Statistical

Mechanics and its Applications, 300(3), 567–578.
Muraoka, M., Shimaoka, S., Yamamoto, K., Watanabe, Y., Okazaki, N., & Inui, K. (2014). Finding the best

model among representative compositional models. In: Proceedings of PACLIC.
Niyogi, P., & Girosi, F. (1999). Generalization bounds for function approximation from scattered noisy data.

Advances in Computational Mathematics, 10, 51–80.
Paperno, D., Pham, N.T., & Baroni, M. (2014). A practical and linguistically-motivated approach to compo-

sitional distributional semantics. In: Proceedings of ACL.
Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In: Pro-

ceedings of EMNLP.
Pham, N.T., Kruszewski, G., Lazaridou, A., & Baroni, M. (2015). Jointly optimizing word representations for

lexical and sentential tasks with the c-phrase model. In: Proceedings of ACL.
Pitman, J. (2006). Combinatorial Stochastic Processes. Berlin: Springer-Verlag.
Pitman, J., & Yor, M. (1997). The two-parameter Pisson-Dirichlet distribution derived from a stable subordi-

nator. Annals of Probability, 25, 855–900.
Rothe, S., & Schütze, H. (2015). Autoextend: Extending word embeddings to embeddings for synsets and

lexemes. In: Proceedings of ACL-IJCNLP.
Socher, R., Huang, E. H., Pennin, J., & Manning, C. D. (2011). Dynamic pooling and unfolding recursive

autoencoders for paraphrase detection. Advances in NIPS, 24, 801–809.
Socher, R., Huval, B., Manning, C.D., & Ng, A.Y. (2012). Semantic compositionality through recursive

matrix-vector spaces. In: Proceedings of EMNLP.
Stratos, K., Collins, M., & Hsu, D. (2015). Model-based word embeddings from decompositions of count

matrices. In: Proceedings of ACL-IJCNLP.
Takase, S., Okazaki, N., & Inui, K. (2016). Composing distributed representations of relational patterns. In:

Proceedings of ACL.
Teh, Y.W. (2006). A hierarchical bayesian language model based on Pitman-Yor processes. In: Proceedings

of ACL.
The BNC Consortium (2007) The british national corpus, version 3 (bnc xml edition). Distributed by Oxford

University Computing Services, http://www.natcorp.ox.ac.uk/
Tian, R.,Miyao, Y., &Matsuzaki, T. (2014). Logical inference on dependency-based compositional semantics.

In: Proceedings of ACL.
Tian, R., Okazaki, N., & Inui, K. (2016). Learning semantically and additively compositional distributional

representations. In: Proceedings of ACL.
Turian, J., Ratinov, L.A., & Bengio, Y. (2010). Word representations: A simple and general method for semi-

supervised learning. In: Proceedings of ACL.
Turney, P.D. (2001).Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In:Proceedings of EMCL.
Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector space models of semantics. Journal of

Artificial Intelligence Research, 37(1), 141–188.

123

http://www.natcorp.ox.ac.uk/


Mach Learn

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Berlin: Springer-Verlag.
Zanzotto, F.M., Korkontzelos, I., Fallucchi, F., & Manandhar, S. (2010). Estimating linear models for compo-

sitional distributional semantics. In: Proceedings of Coling.
Zipf, G. K. (1935). The Psychobiology of Language: An Introduction to Dynamic Philology. Cambridge:

M.I.T. Press.

123


	The mechanism of additive composition
	Abstract
	1 Introduction
	2 Theory
	2.1 Notation and vector representation
	2.2 Practical meaning of the bias bound
	2.3 Formalization and assumptions on natural language data
	2.4 Why is λ<0.5 important?
	2.5 Proof of Theorem 1 and an intuitive explanation
	2.6 Hierarchical Pitman–Yor process

	3 Applications
	3.1 The choice of function F
	3.2 Handling word order in additive composition
	3.3 Dimension reduction

	4 Related work
	5 Experimental verification
	5.1 Test of independence
	5.2 Generalized Zipf's law
	5.3 The choice of function F
	5.4 Handling word order in additive composition
	5.5 Dimension reduction

	6 Extrinsic evaluation of additive compositionality
	6.1 Phrase similarity
	6.2 Word analogy

	7 Conclusion
	Acknowledgements
	Appendix 1: Proof of lemmas
	Appendix 2: The loss function of SGNS
	Noise contrastive estimation
	The Skip-Gram with negative sampling model

	References




