1,242 research outputs found

    Composable Security Analysis of OS Services

    Get PDF
    We provide an analytical framework for analyzing basic integrity properties of file systems, namely the binding of files to filenames and writing capabilities. A salient feature of our modeling and analysis is that it is *composable*: In spite of the fact that we analyze the filesystem in isolation, security is guaranteed even when the file system operates as a component within an arbitrary, and potentially adversarial system. Such secure composability properties seem essential when trying to assert the security of large systems. Our results are obtained by adapting the *Universally Composable* (UC) security framework to the analysis of software systems. Originally developed for cryptographic protocols, the UC framework allows the analysis of simple components in isolation, and provides assurance that these components maintain their behavior when combined in a large system, potentially under adversarial conditions

    HP-CERTI: Towards a high performance, high availability open source RTI for composable simulations (04F-SIW-014)

    Get PDF
    Composing simulations of complex systems from already existing simulation components remains a challenging issue. Motivations for composable simulation include generation of a given federation driven by operational requirements provided "on the fly". The High Level Architecture, initially developed for designing fully distributed simulations, can be considered as an interoperability standard for composing simulations from existing components. Requirements for constructing such complex simulations are quite different from those discussed for distributed simulations. Although interoperability and reusability remain essential, both high performance and availability have also to be considered to fulfill the requirements of the end user. ONERA is currently designing a High Performance / High Availability HLA Run-time Infrastructure from its open source implementation of HLA 1.3 specifications. HP-CERTI is a software package including two main components: the first one, SHM-CERTI, provides an optimized version of CERTI based on a shared memory communication scheme; the second one, Kerrighed-CERTI, allows the deployment of CERTI through the control of the Kerrighed Single System Image operating system for clusters, currently designed by IRISA. This paper describes the design of both high performance and availability Runtime Infrastructures, focusing on the architecture of SHM-CERTI. This work is carried out in the context of the COCA (High Performance Distributed Simulation and Models Reuse) Project, sponsored by the DGA/STTC (Délégation Générale pour l'Armement/Service des Stratégies Techniques et des Technologies Communes) of the French Ministry of Defense

    A Configurable Transport Layer for CAF

    Full text link
    The message-driven nature of actors lays a foundation for developing scalable and distributed software. While the actor itself has been thoroughly modeled, the message passing layer lacks a common definition. Properties and guarantees of message exchange often shift with implementations and contexts. This adds complexity to the development process, limits portability, and removes transparency from distributed actor systems. In this work, we examine actor communication, focusing on the implementation and runtime costs of reliable and ordered delivery. Both guarantees are often based on TCP for remote messaging, which mixes network transport with the semantics of messaging. However, the choice of transport may follow different constraints and is often governed by deployment. As a first step towards re-architecting actor-to-actor communication, we decouple the messaging guarantees from the transport protocol. We validate our approach by redesigning the network stack of the C++ Actor Framework (CAF) so that it allows to combine an arbitrary transport protocol with additional functions for remote messaging. An evaluation quantifies the cost of composability and the impact of individual layers on the entire stack

    ClouNS - A Cloud-native Application Reference Model for Enterprise Architects

    Full text link
    The capability to operate cloud-native applications can generate enormous business growth and value. But enterprise architects should be aware that cloud-native applications are vulnerable to vendor lock-in. We investigated cloud-native application design principles, public cloud service providers, and industrial cloud standards. All results indicate that most cloud service categories seem to foster vendor lock-in situations which might be especially problematic for enterprise architectures. This might sound disillusioning at first. However, we present a reference model for cloud-native applications that relies only on a small subset of well standardized IaaS services. The reference model can be used for codifying cloud technologies. It can guide technology identification, classification, adoption, research and development processes for cloud-native application and for vendor lock-in aware enterprise architecture engineering methodologies
    • …
    corecore