4 research outputs found

    Bit rate transcoding of H.264/AVC based on rate shaping and requantization

    Get PDF

    Toward a General Parametric Model for Assessing the Impact of Video Transcoding on Objective Video Quality

    Get PDF
    Video transcoding can cause degradation to an original video. Currently, there is no general model that assesses the impact of video transcoding on video quality. Such a model could play a critical role in evaluating the quality of the transcoded video, and thereby optimizing delivery of video to end-users while meeting their expectations. The main contribution of this research is the development and substantiation of a general parametric model, called the Video Transcoding Objective-quality Model (VTOM), that provides an extensible video transcoding service selection mechanism, which takes into account both the format and characteristics of the original video and the desired output, i.e., viewing format with preferred quality of service. VTOM represents a mathematical function that uses a set of media-related parameters for the original video and desired output, including codec, bit rate, frame rate, and frame size to predict the quality of the transcoded video generated from a specific transcoding. VTOM includes four quality sub-models, each describing the impact of each of these parameters on objective video quality, as well as a weighted-product aggregation function that combines these quality sub-models with four additional error sub-models in a single function for assessing the overall video quality. I compared the predicted quality results generated from the VTOM with quality values generated from an existing objective-quality metric. These comparisons yielded results that showed good correlations, with low error values. VTOM helps the researchers and developers of video delivery systems and applications to calculate the degradation that video transcoding can cause on the fly, rather than evaluate it statistically using statistical methods that only consider the desired output. Because VTOM takes into account the quality of the input video, i.e., video format and characteristics, and the desired quality of the output video, it can be used for dynamic video transcoding service selection and composition. A number of quality metrics were examined and used in development of VTOM and its assessment. However, this research discovered that, to date, there are no suitable metrics in the literature for comparing two videos with different frame rates. Therefore, this dissertation defines a new metric, called Frame Rate Metric (FRM) as part of its contributions. FRM can use any frame-based quality metric for comparing frames from both videos. Finally, this research presents and adapts four Quality of Service (QoS)-aware video transcoding service selection algorithms. The experimental results showed that these four algorithms achieved good results in terms of time complexity, success ratio, and user satisfaction rate

    User-centric power-friendly quality-based network selection strategy for heterogeneous wireless environments

    Get PDF
    The ‘Always Best Connected’ vision is built around the scenario of a mobile user seamlessly roaming within a multi-operator multi-technology multi-terminal multi-application multi-user environment supported by the next generation of wireless networks. In this heterogeneous environment, users equipped with multi-mode wireless mobile devices will access rich media services via one or more access networks. All these access networks may differ in terms of technology, coverage range, available bandwidth, operator, monetary cost, energy usage etc. In this context, there is a need for a smart network selection decision to be made, to choose the best available network option to cater for the user’s current application and requirements. The decision is a difficult one, especially given the number and dynamics of the possible input parameters. What parameters are used and how those parameters model the application requirements and user needs is important. Also, game theory approaches can be used to model and analyze the cooperative or competitive interaction between the rational decision makers involved, which are users, seeking to get good service quality at good value prices, and/or the network operators, trying to increase their revenue. This thesis presents the roadmap towards an ‘Always Best Connected’ environment. The proposed solution includes an Adapt-or-Handover solution which makes use of a Signal Strength-based Adaptive Multimedia Delivery mechanism (SAMMy) and a Power-Friendly Access Network Selection Strategy (PoFANS) in order to help the user in taking decisions, and to improve the energy efficiency at the end-user mobile device. A Reputation-based System is proposed, which models the user-network interaction as a repeated cooperative game following the repeated Prisoner’s Dilemma game from Game Theory. It combines reputation-based systems, game theory and a network selection mechanism in order to create a reputation-based heterogeneous environment. In this environment, the users keep track of their individual history with the visited networks. Every time, a user connects to a network the user-network interaction game is played. The outcome of the game is a network reputation factor which reflects the network’s previous behavior in assuring service guarantees to the user. The network reputation factor will impact the decision taken by the user next time, when he/she will have to decide whether to connect or not to that specific network. The performance of the proposed solutions was evaluated through in-depth analysis and both simulation-based and experimental-oriented testing. The results clearly show improved performance of the proposed solutions in comparison with other similar state-of-the-art solutions. An energy consumption study for a Google Nexus One streaming adaptive multimedia was performed, and a comprehensive survey on related Game Theory research are provided as part of the work

    Complexity Scalable 2 : 1 Resolution Downscaling MPEG-2 to WMV Transcoder with Adaptive Error Compensation

    No full text
    corecore