142,340 research outputs found

    Complexity Results for Modal Dependence Logic

    Get PDF
    Modal dependence logic was introduced recently by V\"a\"an\"anen. It enhances the basic modal language by an operator =(). For propositional variables p_1,...,p_n, =(p_1,...,p_(n-1);p_n) intuitively states that the value of p_n is determined by those of p_1,...,p_(n-1). Sevenster (J. Logic and Computation, 2009) showed that satisfiability for modal dependence logic is complete for nondeterministic exponential time. In this paper we consider fragments of modal dependence logic obtained by restricting the set of allowed propositional connectives. We show that satisfibility for poor man's dependence logic, the language consisting of formulas built from literals and dependence atoms using conjunction, necessity and possibility (i.e., disallowing disjunction), remains NEXPTIME-complete. If we only allow monotone formulas (without negation, but with disjunction), the complexity drops to PSPACE-completeness. We also extend V\"a\"an\"anen's language by allowing classical disjunction besides dependence disjunction and show that the satisfiability problem remains NEXPTIME-complete. If we then disallow both negation and dependence disjunction, satistiability is complete for the second level of the polynomial hierarchy. In this way we completely classify the computational complexity of the satisfiability problem for all restrictions of propositional and dependence operators considered by V\"a\"an\"anen and Sevenster.Comment: 22 pages, full version of CSL 2010 pape

    Parametrised Complexity of Model Checking and Satisfiability in Propositional Dependence Logic

    Get PDF
    In this paper, we initiate a systematic study of the parametrised complexity in the field of Dependence Logics which finds its origin in the Dependence Logic of V\"a\"an\"anen from 2007. We study a propositional variant of this logic (PDL) and investigate a variety of parametrisations with respect to the central decision problems. The model checking problem (MC) of PDL is NP-complete. The subject of this research is to identify a list of parametrisations (formula-size, treewidth, treedepth, team-size, number of variables) under which MC becomes fixed-parameter tractable. Furthermore, we show that the number of disjunctions or the arity of dependence atoms (dep-arity) as a parameter both yield a paraNP-completeness result. Then, we consider the satisfiability problem (SAT) showing a different picture: under team-size, or dep-arity SAT is paraNP-complete whereas under all other mentioned parameters the problem is in FPT. Finally, we introduce a variant of the satisfiability problem, asking for teams of a given size, and show for this problem an almost complete picture.Comment: Update includes refined result

    Decidability of predicate logics with team semantics

    Get PDF
    We study the complexity of predicate logics based on team semantics. We show that the satisfiability problems of two-variable independence logic and inclusion logic are both NEXPTIME-complete. Furthermore, we show that the validity problem of two-variable dependence logic is undecidable, thereby solving an open problem from the team semantics literature. We also briefly analyse the complexity of the Bernays-Sch\"onfinkel-Ramsey prefix classes of dependence logic.Comment: Extended version of a MFCS 2016 article. Changes on the earlier arXiv version: title changed, added the result on validity of two-variable dependence logic, restructurin

    Complexity of validity for propositional dependence logics

    Full text link
    We study the validity problem for propositional dependence logic, modal dependence logic and extended modal dependence logic. We show that the validity problem for propositional dependence logic is NEXPTIME-complete. In addition, we establish that the corresponding problem for modal dependence logic and extended modal dependence logic is NEXPTIME-hard and in NEXPTIME^NP.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    A Team Based Variant of CTL

    Full text link
    We introduce two variants of computation tree logic CTL based on team semantics: an asynchronous one and a synchronous one. For both variants we investigate the computational complexity of the satisfiability as well as the model checking problem. The satisfiability problem is shown to be EXPTIME-complete. Here it does not matter which of the two semantics are considered. For model checking we prove a PSPACE-completeness for the synchronous case, and show P-completeness for the asynchronous case. Furthermore we prove several interesting fundamental properties of both semantics.Comment: TIME 2015 conference version, modified title and motiviatio

    A Fragment of Dependence Logic Capturing Polynomial Time

    Get PDF
    In this paper we study the expressive power of Horn-formulae in dependence logic and show that they can express NP-complete problems. Therefore we define an even smaller fragment D-Horn* and show that over finite successor structures it captures the complexity class P of all sets decidable in polynomial time. Furthermore we study the question which of our results can ge generalized to the case of open formulae of D-Horn* and so-called downwards monotone polynomial time properties of teams
    • …
    corecore