93 research outputs found

    Synchronization Problems in Automata without Non-trivial Cycles

    Full text link
    We study the computational complexity of various problems related to synchronization of weakly acyclic automata, a subclass of widely studied aperiodic automata. We provide upper and lower bounds on the length of a shortest word synchronizing a weakly acyclic automaton or, more generally, a subset of its states, and show that the problem of approximating this length is hard. We investigate the complexity of finding a synchronizing set of states of maximum size. We also show inapproximability of the problem of computing the rank of a subset of states in a binary weakly acyclic automaton and prove that several problems related to recognizing a synchronizing subset of states in such automata are NP-complete.Comment: Extended and corrected version, including arXiv:1608.00889. Conference version was published at CIAA 2017, LNCS vol. 10329, pages 188-200, 201

    On the Synchronizing Probability Function and the Triple Rendezvous Time for Synchronizing Automata

    Full text link
    Cerny's conjecture is a longstanding open problem in automata theory. We study two different concepts, which allow to approach it from a new angle. The first one is the triple rendezvous time, i.e., the length of the shortest word mapping three states onto a single one. The second one is the synchronizing probability function of an automaton, a recently introduced tool which reinterprets the synchronizing phenomenon as a two-player game, and allows to obtain optimal strategies through a Linear Program. Our contribution is twofold. First, by coupling two different novel approaches based on the synchronizing probability function and properties of linear programming, we obtain a new upper bound on the triple rendezvous time. Second, by exhibiting a family of counterexamples, we disprove a conjecture on the growth of the synchronizing probability function. We then suggest natural follow-ups towards Cernys conjecture.Comment: A preliminary version of the results has been presented at the conference LATA 2015. The current ArXiv version includes the most recent improvement on the triple rendezvous time upper bound as well as formal proofs of all the result

    Strongly transitive automata and the Cerny conjecture

    Get PDF
    The synchronization problem is investigated for a new class of deterministic automata called strongly transitive. An extension to unambiguous automata is also considered

    Complexity of problems concerning reset words for some partial cases of automata

    Get PDF
    A word w is called a reset word for a deterministic finite automaton A if it maps all states of A to one state. A word w is called a compressing to M states for a deterministic finite automaton A if it maps all states of A to at most M states. We consider several subclasses of automata: aperiodic, D-trivial, monotonic, partially monotonic automata and automata with a zero state. For these subclasses we study the computational complexity of the following problems. Does there exist a reset word for a given automaton? Does there exist a reset word of given length for a given automaton? What is the length of the shortest reset word for a given automaton? Moreover, we consider complexity of the same problems for compressing words

    Synchronizing automata with a letter of deficiency 2

    Get PDF
    AbstractWe present two infinite series of synchronizing automata with a letter of deficiency 2 whose shortest reset words are longer than those for synchronizing automata obtained by a straightforward modification of Černý’s construction

    A Theory of Transformation Monoids: Combinatorics and Representation Theory

    Full text link
    The aim of this paper is to develop a theory of finite transformation monoids and in particular to study primitive transformation monoids. We introduce the notion of orbitals and orbital digraphs for transformation monoids and prove a monoid version of D. Higman's celebrated theorem characterizing primitivity in terms of connectedness of orbital digraphs. A thorough study of the module (or representation) associated to a transformation monoid is initiated. In particular, we compute the projective cover of the transformation module over a field of characteristic zero in the case of a transitive transformation or partial transformation monoid. Applications of probability theory and Markov chains to transformation monoids are also considered and an ergodic theorem is proved in this context. In particular, we obtain a generalization of a lemma of P. Neumann, from the theory of synchronizing groups, concerning the partition associated to a transformation of minimal rank
    corecore