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Abstract The synchronization problem is investigated for a new class of deterministic
automata called strongly transitive. An extension to unambiguous automata is also
considered.

1 Introduction

The synchronization problem for a deterministic n-state automaton consists in the search of
an input-sequence, called a synchronizing word, such that the state attained by the automaton,
when this sequence is read, does not depend on the initial state of the automaton itself. If
such a sequence exists, the automaton is called synchronizing. If a synchronizing automaton
is deterministic and complete, a well-known conjecture by Černý [7] claims that it has a
synchronizing word of length not larger than (n − 1)2. This conjecture has been shown to be
true for several classes of automata (cf. [1,2,7,9,11,12,14,16,18,19]). Complexity issues for
this problem have been studied in [11]. The interested reader is referred to [20] for a historical
survey of the problem. Two of the quoted references deserve a special mention: in [14], Kari
proved the Černý conjecture for Eulerian automata, that is, for automata whose underlying
graph is Eulerian. Dubuc [9] proved the conjecture for circular automata, that is, for automata
possessing a letter that acts as a circular permutation over the set of states of the automaton. In
[2], Béal proposed a unified algebraic approach, based upon rational series, that allows one to
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592 A. Carpi, F. D’Alessandro

obtain upper bounds 2n2 −6n+5 and n2 −3n+3 for the length of the shortest synchronizing
word in an n-state synchronizing automaton which is, respectively, circular or Eulerian. In
the first part of this paper (see Sect. 3), the synchronization problem for deterministic and
complete automata is studied. This study is based upon a new notion, called strongly tran-
sitivity introduced in this paper. An n-state automaton is said to be strongly transitive if it
is equipped by a set of n words {w1, . . . , wn}, called independent, such that, for any two
given states s and t , there exists a (unique) word wi such that swi = t . This notion naturally
extends that of transitivity, that is the property of being strongly connected for the underlying
graph of the automaton. Some combinatorial properties of strongly transitive automata are
investigated and, in particular, it is shown that several well-studied classes of automata are
contained in the class of strongly transitive automata. A remarkable family of automata that
satisfy the above mentioned property is that of transitive synchronizing automata. This result
together with the fact that the study of the Černý conjecture can be always reduced, without
loss of generality, to this class of automata should make this concept highly non trivial in this
theoretical setting.

The main result of this section is that any synchronizing strongly transitive n-state autom-
aton has a synchronizing word of length not larger than

(n − 2)(n + L − 1) + 1,

where L denotes the length of the longest word of an independent set of words of the automa-
ton. This result is proved by developing the theoretical approach of [2]. As a straightforward
corollary of this result, one can obtain the bound 2(n − 2)(n − 1) + 1 for the shortest syn-
chronizing word of any n-state synchronizing circular automaton. As we previously pointed
out, together with this result, some basic properties of such automata are investigated. It is
shown that circular automata and transitive synchronizing automata are strongly transitive.
In particular, it is proved that if a transitive n-state automaton has a synchronizing word u,
then it has an independent set of words of length not larger than |u| + n − 1. It is also proved
that the previous upper bound is tight. More precisely, we construct an infinite family of
synchronizing strongly transitive automata such that any independent set of the automaton
contains a word whose length is not smaller than |u|+ n − 1 where u is the shortest synchro-
nizing word. Moreover we give examples of strongly transitive automata which are neither
circular nor synchronizing.

In Sect. 4, we focus our attention on the class of unambiguous automata. We recall that the
synchronization problem is closely related to that of finding short words of minimal rank in
an automaton. Here, the rank of a word is the linear rank of the associated transition relation
and thus a synchronizing word is a word of rank 1. In general, the length of the shortest word
of minimal rank in a nondeterministic automaton is not polynomially upperbounded by the
number of states of the automaton [13]. However in the case of unambiguous automata, such
a bound exists: in [5] it is shown that for an n-state complete unambiguous and transitive
automaton, there exists a word of minimal rank r of length less than 1

2rn3. Some interesting
results on such class of automata have been recently proven in [3].

In this paper, we consider unambiguous and transitive automata on an alphabet A satis-
fying the following combinatorial property: there exist two sets of words V and W such that
A ⊆ V, W and, for any state s, one has

∑

v∈V

Card(sv) ≥ Card(V ) and
∑

w∈W

Card(sw−1) ≥ Card(W ).

For instance, Eulerian automata satisfy the previous conditions with V = W = A. The main
result of this section is that a synchronizing unambiguous n-state automaton satisfying the

123



Strongly transitive automata and the Černý conjecture 593

previous conditions has a synchronizing word of length not larger than

(n − 2)(n + L − 1) + 1,

where L is the maximal length of the words of the set V ∪ W . In particular, we derive that
any transitive synchronizing unambiguous Eulerian n-state automaton has a synchronizing
word of length not larger than (n − 1)2.

Some of the results of this paper were presented in undetailed form at DLT 2008 [6].

2 Preliminaries

We assume that the reader is familiar with the theory of automata and rational series. In this
section we shortly recall a vocabulary of few terms and we fix the corresponding notation
used in the paper.

Let A be a finite alphabet and let A∗ be the free monoid of words over the alphabet A.
The identity of A∗ is called the empty word and is denoted by ε. The length of a word of A∗
is the integer |w| inductively defined by |ε| = 0, |wa| = |w| + 1, w ∈ A∗, a ∈ A. If n is a
positive integer, An denotes the set of all words of A∗ of length equal to n. For any u ∈ A∗
and a ∈ A, |u|a denotes the number of occurrences of the letter a in u. For any finite set W
of words of A∗, we denote by LW the length of the longest word in W.

A finite automaton is a triple A = (S, A, δ) where S is a finite set of elements called states
and δ is a map

δ : S × A −→ �(S)

from S × A into the family �(S) of all subsets of S. The map δ is called the transition
function of A. The canonical extension of the map δ to the set S × A∗ is still denoted by δ.
For any u ∈ A∗ and s ∈ S, the set of states δ(s, u) will be also denoted su. If P is a subset
of S and u is a word of A∗, we denote by Pu and Pu−1 the sets:

Pu =
⋃

s∈P

su, Pu−1 = {s ∈ S | su ∩ P �= ∅}.

If Card(sa) ≤ 1 for all s ∈ S, a ∈ A, the automaton A is deterministic; if Sw �= ∅ for all
w ∈ A∗, A is complete; if

⋃
w∈A∗ sw = S for all s ∈ S, A is transitive. If n = Card(S), we

will say that A is an n-state automaton. Let A be a deterministic automaton. A synchronizing
or reset word is a word u ∈ A∗ such that Card(Su) = 1. The state q such that Su = {q} is
called the reset state of u. A synchronizing deterministic automaton is an automaton that has
a reset word. The following conjecture has been raised in [7].

Černý conjecture Each synchronizing complete deterministic n-state automaton has a reset
word of length not larger than (n − 1)2.

We recall that a formal power series with rational coefficients and non-commuting vari-
ables in A is a mapping of the free monoid A∗ into Q. A series S : A∗ → Q is rational if
there exists a triple (α, µ, β) where

• α ∈ Q1×n , β ∈ Qn×1 are a horizontal and a vertical vector, respectively,
• µ : A∗ → Qn×n is a morphism of the free monoid A∗ in the multiplicative monoid Qn×n

of matrices with coefficients in Q,
• for every u ∈ A∗, S(u) = αµ(u)β.
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The triple (α, µ, β) is called a representation of S and the integer n is called its dimension.
With a minor abuse of language, if no ambiguity arises, the number n will be also called the
dimension of S. Let A = (S, A, δ) be any n-state automaton. One can associate with A a
morphism

ϕA : A∗ → QS×S,

of the free monoid A∗ in the multiplicative monoid QS×S of matrices over the set of rational
numbers, defined as: for any a ∈ A and for any s, t ∈ S,

ϕA(a)st =
{

1 if t ∈ sa
0 otherwise.

It is worth to recall some well-known properties of the map ϕA. For every u ∈ A∗ and for
every s, t ∈ S, the coefficient ϕA(u)st is the number of all distinct computations of A from
s to t labelled by u.

If every matrix of the monoid ϕA(A∗) is such that every row does not contain more than
one non-null entry, then A is deterministic.

If ϕA(A∗) does not contain the null matrix then A is complete. The following result is
important [4, Corollary 3.6].

Proposition 1 Let S : A∗ → Q be a rational series of dimension n with coefficients in Q.
If, for every u ∈ A∗ such that |u| ≤ n − 1, S(u) = 0 the series S is null.

As a corollary we obtain the following well-known result (see [4,10]).

Theorem 1 (Moore, Conway) Let S1, S2 : A∗ → Q be two rational series with coefficients
in Q of dimension n1 and n2, respectively. If, for every u ∈ A∗ such that |u| ≤ n1 + n2 − 1,
S1(u) = S2(u), the series S1 and S2 are equal.

Let P be a subset of S. We associate with P a series S with coefficients in Q defined as:
for every u ∈ A∗,

S(u) = Card(Pu−1) − Card(P). (1)

The following result was proven in [2, Lemma 2]

Lemma 1 Let A = (S, A, δ) be a deterministic n-state automaton and let P be a subset of
S. The series S defined by Eq. (1) is rational of dimension n.

The following result is a consequence of Proposition 1.

Corollary 1 Let A = (S, A, δ) be a deterministic n-state automaton and let P be a subset
of S. Suppose that there exists a word u such that

Card(Pu−1) �= Card(P).

Then there exists a word satisfying the previous condition whose length is not larger than
n − 1.

Proof By Lemma 1, S is a rational series of dimension n. By hypotheses, S is not null. The
claim follows from the latter condition by applying Proposition 1. ��
Remark 1 It is useful to remark that if A = (S, A, δ) is a deterministic transitive synchro-
nizing automaton, then every proper and nonempty subset P of S satisfies the hypotheses of
Corollary 1. Indeed, if P is such a set, for any state p of P , one can find a reset word w such
that Sw = {p}. This gives S = Pw−1 and thus Card(Pw−1) > Card(P).
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Strongly transitive automata and the Černý conjecture 595

3 Strongly transitive automata

All the automata considered in this section are deterministic and complete, unless differently
stated.

As is well-known, the study of the Černý conjecture can be always reduced to the case of
transitive automata (cf. [15]). For the sake of completeness we report a proof of this reduction.

Proposition 2 Let A be a synchronizing n-state automaton. Then there exist a synchronizing
transitive m-state automaton A′, with m ≤ n, and a word v such that

• |v| ≤ (n − m)2,
• for every reset word w of A′, vw is a reset word of A.

Proof Let A = (S, A, δ) and let R be the set of the reset states of A. Set m = Card(R). First
note that

∀a ∈ A, Ra ⊆ R. (2)

Let S′ ⊆ S and s ∈ S′\R. Since R is the set of the reset states of A, there exists u ∈ A∗ such
that su ∈ R. Moreover we may assume that |u| ≤ Card(S\R) = n − m. By Eq. (2), one has
Ru ⊆ R. Thus Card(S′u\R) < Card(S′\R). By applying n − m times at most the previous
argument starting from S′ = S, one constructs a word v ∈ A∗ such that

|v| ≤ (n − m)2 , Sv ⊆ R.

Consider the triple A′ = (R, A, δ′) where δ′ is the restriction of the map δ to the set R × A.
By Eq. (2), it is easily checked that A′ is a transitive synchronizing automaton. Since R is
the set of the reset states of the automaton A′, v is the desired word and this concludes the
proof. ��
Remark 2 By Proposition 2, if w is a reset word of A′, then the word vw is a reset word of
A. Assuming that the Černý conjecture is true for transitive automata, we may take |w| ≤
(m − 1)2 so that

|vw| = |v| + |w| ≤ (n − m)2 + (m − 1)2 ≤ (n − 1)2.

In this section, we shall introduce a special class of transitive automata called strongly
transitive and we shall study the synchronization problem for this class of automata. Let us
first introduce the following definition.

Definition 1 Let A = (S, A, δ) be an n-state automaton. Then A is called strongly transitive
if there exist n words w0, . . . , wn−1 ∈ A∗ such that

∀s, t ∈ S, ∃ i = 0, . . . , n − 1, swi = t. (3)

The set {w0, . . . , wn−1} is called independent.

We observe that a set {w0, . . . , wn−1} is independent if and only if, for any state s of S,
the states swi , i = 0, . . . , n − 1, are pairwise distinct. The following example shows that
transitivity does not imply strongly transitivity.

Example 1 Consider the 3-state automaton A over the alphabet A = {a, b} defined by the
following graph:
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The automaton A is transitive. Let us prove that it is not strongly transitive. Indeed, by contra-
diction, let W be an independent set. Then there are words u, v ∈ W such that 3u = 1, 3v = 2.
One easily derives that |u|b and |v|b are odd so that 1u = 1v = 3. Therefore we have a con-
tradiction because the states 1u and 1v must be distinct. Hence W cannot be independent.

Now we show that any transitive synchronizing automaton has an independent set.

Proposition 3 Let A be a transitive n-state automaton. If A has a reset word of length �,
then there exists an independent set W for A such that LW < � + n.

Proof Let u be a reset word of A and q be its reset state. Since A is transitive, there exist
words u0, u1, . . . , un−1 that label computations from q to all the states of A, with |ui | < n,
i = 0, . . . , n − 1. Therefore the set of n words

W = {uu0, uu1, . . . , uun−1}

is independent for A and LW < � + n. ��

The previous proposition allows us to state the following corollary.

Corollary 2 Any transitive synchronizing automaton is strongly transitive.

By a well-known result [12,17], any synchronizing automaton has a reset word of length
not larger than (n3 − n)/6. Thus it has an independent set W such that LW is not larger than

n3 − n

6
+ n − 1.

Moreover if the Černý conjecture is true, the previous bound can be lowered to

n(n − 1).

Now we prove that there exist automata for which the upper bound stated in Proposition 3 is
tight. More precisely, we will construct, for any positive integer n, a synchronizing (2n +1)-
state automaton A such that, for any independent set W of A, LW ≥ � + 2n, where � is the
length of the shortest reset word of A.

Example 2 Let n be a positive integer. Consider the automaton An = (Sn, A, δn) where
A = {a, b, c}, Sn = {0, 1, 2, . . . , 2n} and the transition map δn is defined as follows:

• 0a = 0c = 0, 0b = 1,
• for i = 1, 2, . . . , n, ia = i − 1, ib = i + (−1)i , ic = i − (−1)i ,
• for i = n + 1, n + 2, . . . , 2n, ia = i + 1 mod (2n + 1), ib = ic = n + 1.
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Strongly transitive automata and the Černý conjecture 597

For instance, the graph of the automaton A4 is drawn in the following picture:

5 6 7 8

4 3 2 1 0

b,c

a,c

a a a

a
b

b bcc

a,c
a,b a,c a,b

One can easily check that the word a4 is a reset word of minimal length while the set

{a4, a4b, a4bc, a4bcb, a4bcbc, a4bcbcb, a4bcbcba, a4bcbcba2, a4bcbcba3},
is an independent set of words of the automaton A4.

One can easily verify that Snan = {0}. Thus An is a synchronizing automaton and,
by Corollary 2, it is strongly transitive. We shall prove that, for any independent set W ,
LW ≥ Card(Sn) + |an | − 1.

Lemma 2 Let W be an independent set of An. Then every word of W is a reset word.

Proof Let W = {w0, . . . , w2n} be an independent set of words of An . By possibly rearrang-
ing the words of W, we can suppose that, for i = 0, 1, . . . , 2n, (n + 1)wi = i . In view of
the definition of the map δn , one can easily check that, for i = 0, 1, . . . , n,

wi ∈ A∗an A∗.

Since an is a reset word for An , one has that, for i = 0, 1, . . . , n, wi is a reset word of An

and, moreover,

Snwi = {i}. (4)

By Eq. (4), one has, for i = n + 1, . . . , 2n,

Snwi ⊆ {n + 1, n + 2, . . . , 2n}. (5)

We now prove that Eq. (4) holds also for i = n + 1, n + 2, . . . , 2n. Let us first consider the
state i = 2n. One can easily remark that every word that labels a computation from n + 1
to 2n must end with the word an−1. On the other hand, for i = n + 1, . . . , 2n − 1, every
word that labels a computation from n + 1 to i cannot end with an−1. In view of Eq. (5), this
implies that Snw2n = {2n} and, for i = n, n + 1, . . . , 2n − 1,

Snwi ⊆ {n + 1, . . . , 2n − 1}.
By iterating this combinatorial argument one can prove that Eq. (4) holds for i = 2n − 1,

2n − 2, . . . , n + 1. Thus all elements of W are reset words and the statement is proved. ��

The following proposition allows us to obtain the quoted claim.

Proposition 4 For any independent set W of An one has LW ≥ 3n.
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Proof By Lemma 2, any independent set contains a word w such that Snw = {2n}. Thus
the main task amounts to prove that |w| ≥ 3n. For this purpose, one can observe that, for
i = 0, . . . , n and σ ∈ A,

{0, 1, . . . , i}σ ⊇ {0, 1, . . . , i − 1}.
This implies that, for every u ∈ An ,

0 ∈ {0, 1, . . . , n}u. (6)

Since the minimal length of a path from 0 to 2n in the graph of An is 2n, one has |w| ≥ 2n,
so that one can factorize w = uv with u, v ∈ A∗ and |u| = n. Equation (6) implies that
0 ∈ Snu and therefore, 0v ∈ Snw = {2n}. By the previous remark, this implies |v| ≥ 2n, so
that |w| ≥ 3n and the proof is complete. ��

The following useful property easily follows from Definition 1.

Lemma 3 Let A be a strongly transitive automaton and let W be an independent set of A.
Then, for every u ∈ A∗, the set uW is an independent set of A.

Proposition 5 Let A = (S, A, δ) be a strongly transitive n-state automaton and let W be
an independent set of A. Then for every subset P of S:

∑

w∈W

Card(Pw−1) = n Card(P). (7)

Proof Let W = {w0, . . . , wn−1} and let p ∈ S. Because of Eq. (3), one has

S =
n−1⋃

i=0

{p}w−1
i ,

and the sets {p}w−1
i are pairwise disjoint. This immediately gives:

n−1∑

i=0

Card({p}w−1
i ) = n. (8)

Let P = {p1, . . . , pm} be a subset of m states. Since A is deterministic, for any pair pi , p j

of distinct states of P and for every u ∈ A∗, one has:

{pi }u−1 ∩ {p j }u−1 = ∅,

and, along with Eq. (8), this yields:

n−1∑

i=0

Card(Pw−1
i )=

n−1∑

i=0

m∑

j=1

Card({p j }w−1
i ) = mn. (9)

��
Corollary 3 Let A = (S, A, δ) be a synchronizing transitive n-state automaton and let W
be an independent set of A. Let P be a proper and non empty subset of S. Then there exists
a word v ∈ A∗ such that

|v| ≤ n + LW − 1, Card(Pv−1) > Card(P).
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Strongly transitive automata and the Černý conjecture 599

Proof Let W = {w0, . . . , wn−1}. We first prove that there exist a word v ∈ A∗ with
|v| ≤ n − 1 and i = 0, . . . , n − 1 such that

Card(P(vwi )
−1) �= Card(P). (10)

If there exists i = 0, . . . , n −1 such that Card(Pw−1
i ) �= Card(P), take v = ε. Now suppose

that the latter condition does not hold so that

Card(Pw−1
0 ) = Card(P).

Since P is a proper subset of S, by Remark 1 and by applying Corollary 1 to the set Pw−1
0 , one

has that there exists a word v ∈ A∗ such that |v| ≤ n − 1 and Card(P(vw0)
−1) �= Card(P).

Thus take words v and wi that satisfy Eq. (10). If Card(P(vwi )
−1) > Card(P), since

|vw−1
i | ≤ n − 1 + LW , we are done. Finally suppose that

Card(P(vwi )
−1) < Card(P).

By Lemma 3, the set vW = {vw0, . . . , vwn−1} is independent for A. Therefore, by
Proposition 5,

n−1∑

i=0

Card(P(vwi )
−1) = n Card(P),

so that Eq. (10) implies the existence of an index j such that Card(P(vw j )
−1) > Card(P).

Since, as before, |vw−1
j | ≤ n − 1 + LW , the claim is proved. ��

As a consequence of Corollary 3, the following theorem holds.

Theorem 2 Let A = (S, A, δ) be a synchronizing transitive n-state automaton and let W
be an independent set of A. Then there exists a reset word for A of length not larger than

(n − 2)(n + LW − 1) + 1. (11)

Proof Let P be a non-empty subset of S with Card(P) < n. Since A is synchronizing, there
exists some word u such that

Card(Pu−1) �= Card(P).

By Corollary 3, we can assume that |u| ≤ n + LW − 1 and Card(Pu−1) > Card(P). There-
fore from any subset P of at least 2 states, by applying the previous argument (n − 2) times
at most, we can construct a word u such that Su ⊆ P and |u| ≤ (n − 2)(n + LW − 1). The
claim finally follows from the fact that, in a synchronizing automaton, there always exist a
letter a ∈ A and a set P of two states such that Card(Pa) = 1. ��
Remark 3 In [9], Dubuc showed that the Černý conjecture is true for circular automata. An
n-state automaton is called circular if its underlying graph has a Hamiltonian cycle labelled
by a power of a letter. This is equivalent to say that such a letter, say a, acts as a circular per-
mutation on the set of states of the automaton. This implies that the words ε, a, a2, . . . , an−1

form an independent set of the automaton. Thus, from Theorem 2, one derives that any circular
n-state automaton has a reset word of length not larger than

2(n − 2)(n − 1) + 1.

We remark that a similar bound was established in [18] for the larger class of regular automata.
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600 A. Carpi, F. D’Alessandro

We have seen that circular automata are strongly transitive. However this notion is more
general than that of circular automaton as shown in the following three examples.

Example 3 Let Zk × Z� be the direct product of the cyclic groups Zk and Z� of orders k and
�, respectively. Consider the automaton A = (S, A, δ) where A = {a, b}, S = Zk × Z� and
the transition map δ is defined as: for any (i, j) ∈ Zk × Z�,

δ((i, j), a) = (i + 1, j), δ((i, j), b) = (i, j + 1).

If k, � ≥ 2, then it is easily checked that the automaton is not circular and that the set W
of words

ε, a, . . . , ak−1, b, ba, . . . , bak−1, . . . , b�−1, b�−1a, . . . , b�−1ak−1

is an independent set of A with LW = k + � − 2.

The next example can be viewed as a generalization of the previous one.

Example 4 Let Ai = (Si , {a, c}, δi ), i = 0, . . . , k − 1, be circular �-state automata whose
underlying graph has a Hamiltonian cycle labeled by a�. We assume that the sets Si are
pairwise disjoint and, moreover, that the automaton A0 is a synchronizing automaton such
as, for instance, the Černý automaton [7]. We define the automaton A = (S, A, δ) where
the set of states is S = ⋃k−1

i=0 Si , the alphabet is A = {a, b, c} and the transition function δ

satisfies the following conditions:

1. for q ∈ Si , i = 0, . . . , k − 2,

δ(q, a) = δi (q, a), δ(q, c) = δi (q, c), δ(q, b) ∈ Si+1,

2. for q ∈ Sk−1,

δ(q, a) = δk−1(q, a), δ(q, b), δ(q, c) ∈ S0,

It is easily checked that the automaton is not circular and that the set W of words

ε, a, . . . , a�−1, b, ba, . . . , ba�−1, . . . , bk−1, bk−1a, . . . , bk−1a�−1

is an independent set of A with LW = k + � − 2.
We now check that A is synchronizing. Set α = α0α1, where

α0 = (cbk−1)k−2c,

and α1 is a reset word of A0 (in the case that A0 is a Černý automaton, just take α1 =
(ca�−1)�−2c). Indeed, the symbols b and c act on the subsets {Si }i=0,...,k−1 as in the Černý
k-state automaton. This implies that, for any i = 0, . . . , k − 1,

Siα0 ⊆ S0.

Again, by the fact that A0 is the Černý �-state automaton on the alphabet {a, c}, one has that

S0α1 = {s0}, s0 ∈ S0.

Therefore we have

Sα = Sα0α1 = S0α1 = {s0},
thus showing that A is synchronizing.
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Example 5 Let A be an n-state automaton whose underlying graph G has a Hamiltonian
cycle C = (0, 1, . . . , n − 1, 0) labelled by a power u of a primitive word v ∈ A∗, that is
u = v�, � ≥ 2. Consider the partition of S given by the family of cosets of the arithmetic
congruence modulo |v|. Denote Ci the coset of an element i in S. Moreover suppose that
there exists a word w such that Sw ⊆ C0. Let W be the set of n words

wp0, wp1, . . . , wpn−1,

where, for every i = 0, . . . , n − 1, pi is the prefix of u of length i . It is easily checked that
W is an independent set for the automaton and that LW = |w| + n − 1. We finally remark
that, in general, this automaton is not circular.

For instance, in the following automaton there is a Hamiltonian cycle labelled by (ab)2

and the word w = ab maps every state of the automaton in the set C0 = {0, 2}. Thus
W = {ab, aba, abab, ababa} is an independent set.

��������0
a ����
a

b

��
��������1

b

��

��

b

��������3

b

��

a

��
��������2a

��

4 Unambiguous automata

In this section, we study the synchronization problem for unambiguous automata. First, we
need to recall some basic notions and results concerning monoids of (0, 1)-matrices.

4.1 Monoids of (0, 1)-matrices

Let S be a finite set of indices and let QS×S be the monoid of S × S matrices with the usual
row-column product. For any m ∈ QS×S and for any s ∈ S, the symbols ms∗ and m∗s will
denote, respectively, the row and the column of m of index s.

We will denote by {0, 1}S×S the set of the matrices of QS×S whose entries are all 0
and 1. Any submonoid M of QS×S such that M ⊆ {0, 1}S×S will be called a monoid of
(0, 1)-matrices (or monoid of unambiguous relations).

A monoid of (0, 1)-matrices is transitive if, for any s, t ∈ S, there exists m ∈ M such that
mst = 1.

Let M be a monoid of (0, 1)-matrices. Any row (resp., column) of a matrix of M will be
called a row (resp., column) of M . The sets of the rows and columns of M are ordered in the
usual way:

a ≤ b if as ≤ bs for all s ∈ S.

The weight of a row or column a of M is the integer ‖a‖ = ∑
s∈S as . The following two

lemmas will be useful in the sequel.
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602 A. Carpi, F. D’Alessandro

Lemma 4 Let M be a transitive monoid of (0, 1)-matrices. If a �= 0 is a row (resp., column)
of M which is not maximal, then one has ‖am‖ > ‖a‖ (resp., ‖ma‖ > ‖a‖) for some m ∈ M.

Proof We assume that a is a row of M . The case where a is a column can be dealt with
symmetrically. Since a is not maximal, one has a < m′

s∗ for some m′ ∈ M , s ∈ S. Let
r ∈ S be such that ar = 1. By transitivity, there exists m′′ ∈ M such that m′′

rs = 1. Setting
m = m′′m′, one derives am ≥ m′

s∗ > a and, consequently, ‖am‖ > ‖a‖. ��
Lemma 5 Let M be a monoid of (0, 1)-matrices of dimension n. For any row a and any
column b of M, one has ‖a‖ + ‖b‖ ≤ n + 1.

Proof One has a = mr∗ and b = m′∗s for suitable m, m′ ∈ M , r, s ∈ S. Consequently,
ab = ( mm′)rs ≤ 1. Hence, there is at most one index p ∈ S such that ap = bp = 1. The
conclusion follows. ��

The minimal ideal of a transitive monoid of (0, 1)-matrices has been characterized by
Césari [8]. We summarize in the following statement some of the results of [8].

Proposition 6 Let M be a transitive monoid of (0, 1)-matrices that does not contain the null
matrix and let D be its minimal ideal. Then there exists an integer p such that

1. the elements of D are the matrices of M of the form

m = b1a1 + b2a2 + · · · + bpap ,

with a1, a2, . . . , ap maximal rows of M and b1, b2, . . . , bp maximal columns of M,
2. for any matrix m ∈ M of the form

m = b1a1 + b2a2 + · · · + bpap + µ ,

with a1, a2, . . . , ap maximal rows of M, b1, b2, . . . , bp maximal columns of M, and
µ ∈ {0, 1}S×S, one has µ = 0, and consequently m belongs to D,

3. the integer p is the minimal linear rank of the matrices of M.

4.2 Synchronizing unambiguous automata

An automaton A = (S, A, δ) is said to be unambiguous if and only if M = ϕA(A∗) is a
monoid of (0, 1)-matrices. This is equivalent to say that, for any pair of states s, t and any
word u, there exists at most one computation of A from s to t labelled by u.

Let A be a non-deterministic automaton. A reset word of A is any word w such that ϕA(w)

has linear rank 1.
In the sequel we will suppose that A is a transitive unambiguous n-state automaton.

Moreover, we assume that there exists a finite set V ⊆ A∗ such that A ⊆ V and

∀p ∈ S,
∑

v∈V

Card(pv) ≥ Card(V ). (12)

Notice that if A is deterministic and complete, then any finite set V satisfies Eq. (12).
Under our hypotheses, the following holds.

Lemma 6 For all a ∈ NS,
∑

v∈V

‖aϕA(v)‖ ≥ ‖a‖ Card(V ).
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Proof One has
∑

v∈V

‖aϕA(v)‖ =
∑

v∈V

∑

p,r∈S

ap(ϕA(v))pr =
∑

p∈S

ap

∑

v∈V

∑

r∈S

(ϕA(v))pr .

Since for any v ∈ A∗, r ∈ S one has
∑

r∈S(ϕA(v))pr = Card(pv), from Eq. (12)
∑

v∈V

‖aϕA(v)‖ ≥
∑

p∈S

ap Card(V ) = ‖a‖ Card(V ).

��
In view of Proposition 6, in order to find a reset word of A, it would be useful to find a

word w of short length such that ϕA(w) has a maximal row or column. The next propositions
furnish a tool to produce rows of increasing weight.

Proposition 7 Let a be a row of ϕA(A∗) such that ‖aϕA(u)‖ �= ‖a‖ for some u ∈ A∗. Then
there exists a word w such that

‖aϕA(w)‖ > ‖a‖ , |w| ≤ LV + n − 1.

Proof We notice that the series S defined by S(u) = ‖aϕA(u)‖, u ∈ A∗, is a rational series
of dimension n. Indeed, S has the linear representation (a, ϕA,	) where 	 = t(1, 1, . . . , 1).
On the other side, the series S0 defined by S0(u) = ‖a‖ for all u ∈ A∗, is a rational series of
dimension 1.

Let u be the shortest word such that ‖aϕA(u)‖ �= ‖a‖. By Theorem 1, one has
|u| ≤ n. If ‖aϕA(u)‖ > ‖a‖, then the statement is verified for w = u. Thus we assume
‖aϕA(u)‖ < ‖a‖.

Write u = u′x with u′ ∈ A∗ and x ∈ A, and set b = aϕA(u′). Since x ∈ V , by Lemma 6
one has

∑

v∈V \{x}
‖bϕA(v)‖ ≥ ‖b‖ Card(V ) − ‖bϕA(x)‖.

By the minimality of u, one has ‖b‖ = ‖a‖ while ‖bϕA(x)‖ = ‖aϕA(u)‖ < ‖a‖. Thus,
from the previous equation one obtains

∑

v∈V \{x}
‖bϕA(v)‖ > ‖a‖ Card(V \{x}).

Consequently, there is v ∈ V \{x} such that ‖bϕA(v)‖ > ‖a‖. Taking w = u′v, one has
‖aϕA(w)‖ = ‖bϕA(v)‖ > ‖a‖. Since, moreover, |w| = |u| − 1 + |v| ≤ |u| + LV − 1, the
proof is achieved. ��
Lemma 7 The automaton A is complete.

Proof Let a be a row of ϕA(A∗) with ‖a‖ maximal. By Proposition 7, it follows that
‖aϕA(u)‖ = ‖a‖ > 0 for all u ∈ A∗. Consequently, ϕA(u) �= 0 for all u ∈ A∗. ��
Proposition 8 Set m1 = max{‖a‖ | a row of ϕA(A∗)}. There exists a word w such that
ϕA(w) has a maximal row and

|w| ≤ max{0, 1 + (m1 − 2)(LV + n − 1)}. (13)
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Proof If the automaton A is deterministic, then any row of ϕA(ε) is maximal and the state-
ment is trivially verified. Thus we assume that A is not deterministic. Hence, there is a letter
x ∈ A and a row a0 of ϕA(x) such that ‖a0‖ ≥ 2.

In view of Proposition 7 and Lemma 4 one can find words wi and vectors ai , 1 ≤ i ≤ k
such that

ai = ai−1ϕA(wi ) , ‖ai‖ > ‖ai−1‖ , |wi | ≤ LV + n − 1 , (14)

and ak is a maximal row of ϕA(A∗). Set w = xw1w2 · · · wk . Since a0 is a row of ϕA(x), the
vector ak = a0ϕA(w1w2 · · · wk) is a row of ϕA(w). Moreover, from (14) one has

m1 ≥ ‖ak‖ ≥ k + ‖a0‖ ≥ k + 2 , |w| ≤ 1 + k(LV + n − 1).

From these inequalities, one easily derives Eq. (13), concluding the proof. ��
In the sequel we will further suppose that there exists also a finite set W ⊆ A∗ such that

A ⊆ W and

∀p ∈ S,
∑

w∈W

Card(pw−1) ≥ Card(W ). (15)

In such a case, with an argument symmetrical to that used in the proof of Proposition 8
one can prove the following

Proposition 9 Set m2 = max{‖b‖ | bcolumn of ϕA(A∗)}. There exists a word v such that
ϕA(v) has a maximal column and

|v| ≤ max{0, 1 + (m2 − 2)(LW + n − 1)}.
Now we state the main result of this section.

Proposition 10 Let A be a synchronizing unambiguous transitive n-state automaton, with
n ≥ 2. Let V, W ⊆ A∗ be two finite sets of words satisfying Eq. (12) and Eq. (15), respectively,
with A ⊆ V, W . Then A has a reset word u such that

|u| ≤ (n − 2)LV ∪W + n2 − 3n + 3.

Proof First, we consider the case that the parameters m1, m2 introduced in Propositions 8
and 9 verify the conditions mi ≥ 2, i = 1, 2.

By Propositions 8 and 9, there are words w and v and states p, q ∈ S such that
(ϕA(v))p∗ = a is a maximal row of ϕA(A∗), (ϕA(w))∗q = b is a maximal column of ϕA(A∗),
and

|v| ≤ 1 + (m1 − 2)(LV + n − 1) , |w| ≤ 1 + (m2 − 2)(LW + n − 1). (16)

Since A is transitive, there exists a word z such that p ∈ qz and |z| ≤ n − 1. One has then
(ϕA(z))qp = 1 and consequently

ϕA(wzv) = (ϕA(w))∗q(ϕA(z))qp(ϕA(v))p∗ + µ = ba + µ ,

for some µ ∈ {0, 1}S×S . By Lemma 7, ϕA(A∗) is a transitive monoid of (0, 1)-matrices
without 0, and, by hypothesis, its minimal rank is 1. By Proposition 6 one derives that µ = 0
and u = wzv is a reset word.

Now we evaluate |u|. From (16) one has

|u| = |v| + |w| + |z| ≤ n + 1 + (m1 + m2 − 4)(LV ∪W + n − 1).
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Since by Lemma 5, m1 + m2 ≤ n + 1, one derives

|u| ≤ (n − 3)LV ∪W + n2 − 3n + 4 ,

so that the statement holds true.
Now we consider the case m2 = 1 (the case m1 = 1 is symmetrically dealt with). We can

still find a word v and a state p ∈ S such that a = (ϕA(v))p∗ is a maximal row of ϕA(A∗)
and |v| ≤ 1 + (m1 − 2)(LV + n − 1). Since m1 ≤ n and LV ≤ LV ∪W , one obtains

|w| ≤ (n − 2)LV ∪W + n2 − 3n + 3.

Now, to complete the proof, it is sufficient to verify that v is a reset word. Since m2 = 1,
the vector b = (ϕA(ε))∗p is a maximal column of ϕA(A∗). Moreover, ϕA(v) = ba + µ for
some µ ∈ {0, 1}S×S . By Proposition 6 one derives that v is a reset word. This concludes the
proof. ��
Example 6 Consider the following unambiguous transitive complete automaton.

��������1
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b
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��������3

b

��

b

��
��������2

b
��

Let us verify that there does not exist a finite set W ⊆ A∗ such that A ⊆ W and satisfying
Eq. (15). Indeed, one easily verifies that, for any v ∈ A∗,

(1, 1, 1)ϕA(v) = (Card(1v−1), Card(2v−1), Card(3v−1)).

One easily checks that the vectors of the form (1, 1, 1)ϕA(v) with v ∈ A∗ are:

x0 = (1, 1, 1), x1 = (1, 1, 0), x2 = (2, 0, 2), x3 = (1, 0, 1), x4 = (2, 2, 0).

Thus if a set W satisfying Eq. (15) exists there is a linear combination of x0, x1, x2, x3 and
x4 with non negative coefficients k0, k1, k2, k3 and k4 such that

4∑

i=0

ki xi ≥
4∑

i=0

ki x0.

Moreover, if A ⊆ W then the coefficients k1 and k2 of x1 = (1, 1, 1)ϕA(a) and x2 =
(1, 1, 1)ϕA(b) have to be positive. It is easily seen that this is impossible.

An automaton A on a k-letter alphabet is Eulerian if for any vertex of its graph, there are
exactly k in-coming and k out-coming arrows.

Example 7 The following automaton is unambiguous and Eulerian. We remark that it is
neither deterministic nor co-deterministic.
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The word ba is a reset word for the automaton.

In [14], Kari showed that the Černý conjecture is true for Eulerian deterministic automata.
As an application of Proposition 10, we may extend this result to unambiguous Eulerian
automata.

Corollary 4 Any transitive, synchronizing, and unambiguous Eulerian n-state automaton
has a reset word of length not larger than (n − 1)2.

Proof Let A be an Eulerian automaton. From the definition, for any state p of A, one has
∑

a∈A

Card(pa) =
∑

a∈A

Card(pa−1) = Card(A).

Thus, the hypotheses of Proposition 10 are satisfied for V = W = A. The conclusion follows.
��

5 Concluding remarks

In this paper we introduced the notion of strongly transitive automaton. We showed that any
synchronizing deterministic complete transitive automaton A is strongly transitive. More-
over, denoted by � the length of the shortest synchronizing word and by L the minimal value
of LW with W an independent set of A, the quantities � and L are bounded by the following
inequalities:

L − n + 1 ≤ � ≤ (n − 2)(n + L − 1) + 1 ,

where n is the number of states of A.
A naturally arising question asks for bounds of L when A varies in the class of synchro-

nizing deterministic complete transitive automata or, more generally, in the class of strongly
transitive deterministic complete automata.

As we have seen in Sect. 3, if A is a synchronizing deterministic complete transitive n-
state automaton, then L ≤ (n3 − n)/6 + n − 1 and this bound can be lowered to n(n − 1)

if the Černý conjecture is true. On the other side, by Proposition 4 for any odd n there is a
synchronizing deterministic complete n-state automaton such that L = 3(n − 1)/2.

We propose the following

Conjecture 1 There exists a positive number k such that for any synchronizing deterministic
complete n-state automaton, L < kn.

If this conjecture were true, one would derive that, for any synchronizing deterministic
complete transitive n-state automaton, � < (k + 1)n2 − (3 + 2k)n + 3.
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