7,344 research outputs found

    Adaptive complexity regularization for linear inverse problems

    Full text link
    We tackle the problem of building adaptive estimation procedures for ill-posed inverse problems. For general regularization methods depending on tuning parameters, we construct a penalized method that selects the optimal smoothing sequence without prior knowledge of the regularity of the function to be estimated. We provide for such estimators oracle inequalities and optimal rates of convergence. This penalized approach is applied to Tikhonov regularization and to regularization by projection.Comment: Published in at http://dx.doi.org/10.1214/07-EJS115 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On rate optimality for ill-posed inverse problems in econometrics

    Get PDF
    In this paper, we clarify the relations between the existing sets of regularity conditions for convergence rates of nonparametric indirect regression (NPIR) and nonparametric instrumental variables (NPIV) regression models. We establish minimax risk lower bounds in mean integrated squared error loss for the NPIR and the NPIV models under two basic regularity conditions that allow for both mildly ill-posed and severely ill-posed cases. We show that both a simple projection estimator for the NPIR model, and a sieve minimum distance estimator for the NPIV model, can achieve the minimax risk lower bounds, and are rate-optimal uniformly over a large class of structure functions, allowing for mildly ill-posed and severely ill-posed cases.Comment: 27 page

    Necessary conditions for variational regularization schemes

    Full text link
    We study variational regularization methods in a general framework, more precisely those methods that use a discrepancy and a regularization functional. While several sets of sufficient conditions are known to obtain a regularization method, we start with an investigation of the converse question: How could necessary conditions for a variational method to provide a regularization method look like? To this end, we formalize the notion of a variational scheme and start with comparison of three different instances of variational methods. Then we focus on the data space model and investigate the role and interplay of the topological structure, the convergence notion and the discrepancy functional. Especially, we deduce necessary conditions for the discrepancy functional to fulfill usual continuity assumptions. The results are applied to discrepancy functionals given by Bregman distances and especially to the Kullback-Leibler divergence.Comment: To appear in Inverse Problem

    On rate optimality for ill-posed inverse problems in econometrics

    Get PDF
    In this paper, we clarify the relations between the existing sets of regularity conditions for convergence rates of nonparametric indirect regression (NPIR) and nonparametric instrumental variables (NPIV) regression models. We establish minimax risk lower bounds in mean integrated squared error loss for the NPIR and the NPIV models under two basic regularity conditions that allow for both mildly ill-posed and severely ill-posed cases.We show that both a simple projection estimator for the NPIR model, and a sieve minimum distance estimator for the NPIV model,can achieve the minimax risk lower bounds, and are rate-optimal uniformly over a large class of structure functions, allowing for mildly ill-posed and severely ill-posed cases.
    corecore