
  

  

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics
On rate optimality for ill-posed
inverse problems in 
econometrics 
 
 
 
 
 
Xiaohong Chen 
Markus Reiß 
 
 

The Institute for Fiscal Studies 
Department of Economics, UCL 
 
cemmap working paper CWP20/07 

https://core.ac.uk/display/7113165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


On rate optimality for ill-posed inverse problems

in econometrics∗

Xiaohong Chen† Markus Reiß‡

First version: March 15, 2007; this version: September 10, 2007.

Abstract

In this paper, we clarify the relations between the existing sets of regularity conditions for
convergence rates of nonparametric indirect regression (NPIR) and nonparametric instrumental
variables (NPIV) regression models. We establish minimax risk lower bounds in mean integrated
squared error loss for the NPIR and the NPIV models under two basic regularity conditions that
allow for both mildly ill-posed and severely ill-posed cases. We show that both a simple projection
estimator for the NPIR model, and a sieve minimum distance estimator for the NPIV model,
can achieve the minimax risk lower bounds, and are rate-optimal uniformly over a large class of
structure functions, allowing for mildly ill-posed and severely ill-posed cases.

KEY WORDS: Nonparametric instrumental regression; Nonparametric indirect regression; Statis-
tical ill-posed inverse problems; Minimax risk lower bound; Optimal rate.

JEL classifications: Primary C14; secondary C30

∗We thank Joel Horowitz, Whitney Newey, Demian Pouzo, Yixiao Sun and the participants of the March 2007
Oberwolfach Workshop on Semiparametrics for very helpful discussions. X. Chen acknowledges support from the
NSF/USA. The usual disclaimer applies.

†Department of Economics, Yale University, Box 208281, New Haven, CT 06520, USA. Email: xiao-
hong.chen@yale.edu

‡Institute of Applied Mathematics, University of Heidelberg, Germany. Email: reiss@statlab.uni-heidelberg.de



1 Introduction

Recently there is a growing interest in estimation for nonparametric instrumental variables (NPIV)

regression models, see e.g., Newey and Powell (2003), Darolles, Florens and Renault (2002), Hall and

Horowitz (2005), Blundell, Chen and Kristensen (2007), Gagliardini and Scaillet (2006), to name

only a few. The estimators proposed in these papers belong to three broad classes: (1) the finite

dimensional sieve minimum distance estimator (Newey and Powell (2003), Ai and Chen (2003)

and Blundell, Chen and Kristensen (2007)); (2) the infinite dimensional kernel based Tikhonov

regularized estimator (Darolles, Florens and Renault (2002), Hall and Horowitz (2005), Gagliardini

and Scaillet (2006)); and (3) the finite dimensional orthogonal series Tikhonov regularized estimator

(Hall and Horowitz (2005)). Each of these papers presents different sets of sufficient conditions for

consistency and convergence rates of its proposed estimators. In addition, for the mildly ill-posed

case (when the singular values associated with the conditional expectation operator decay to zero

at a polynomial rate), Hall and Horowitz (2005) establish the minimax risk lower bound in mean

integrated squared error loss for the NPIV regression model under a set of regularity conditions that

are related to their estimation procedures. They also show that their proposed estimators achieve

this lower bound; hence their rate is optimal for the class of structure functions they consider.

To the best of our knowledge, there is no published work that discuss the relations among the

different sets of sufficient conditions imposed in these various papers. Therefore, it is unclear whether

the minimax risk lower bound derived in Hall and Horowitz (2005) is still the lower bound under

regularity conditions stated in the other papers. It is also unclear whether the estimators proposed

in the other papers are rate optimal in a minimax framework corresponding to the conditions stated

in these papers. Moreover, when the NPIV problem is severely ill-posed (for instance, when the

singular value associated with the conditional expectation operator decays to zero at an exponential

rate), there are no published results on minimax rates.

In this paper, we address these issues based on a general formulation of the problems. In Section

2, we first present the NPIV models. We then provide two basic regularity conditions: the approx-

imation and the link conditions. The approximation condition is about the complexity of the class

of the structural functions, which is measured as the best finite dimensional linear approximation

error rate in terms of a basis expansion that may not be the eigenfunction basis of the conditional

expectation operator. The link condition is about the relative smoothness of the conditional expec-

tation operator in terms of the basis used in the first condition. We show that these two regularity

conditions are natural generalizations of, and are automatically satisfied by, the so-called “general

source condition”, an assumption commonly imposed in the literature on ill-posed inverse problems.

Our two basic regularity conditions are also implied by the ones assumed in the literature on NPIV
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models, such as those imposed in Darolles, Florens and Renault (2002), Hall and Horowitz (2005),

and Blundell, Chen and Kristensen (2007). In Section 3, we first show that the NPIV model is no

more informative than the reduced form nonparametric indirect regression (NPIR) model (actually

the model assuming a known conditional expectation operator of the endogenous regressor given

the instrumental variables). Under the two basic regularity conditions stated in Section 2, we derive

the minimax risk lower bound in mean integrated squared error loss for the NPIR and the NPIV

models, allowing for both the mildly ill-posed case and the severely ill-posed case. In Section 4,

we present a simple projection estimator for the NPIR models, and establish that it achieves the

lower bounds and hence is rate-optimal in the minimax sense. When restricting our conditions to

various special cases, including the nonparametric mean regression models and the NPIR models

under general source conditions, our results reproduce the existing known minimax optimal rates

for these special cases. But more importantly, our minimax optimal rate results cover many new

cases as long as their model specifications satisfy the approximation and the link conditions. We

also discuss what could happen if the link condition on the relative smoothness of the conditional

expectation operator is not satisfied. In Section 5, we show that the sieve minimum distance (SMD)

estimator for the NPIV models is rate-optimal in the minimax sense. In fact, we show that both

the projection estimator for the NPIR models and the SMD estimator for the NPIV models are

rate-optimal uniformly over a large class of structure functions, allowing for arbitrarily decaying

speed of the singular values of the conditional expectation operator. Section 6 provides some further

discussions on the regularity conditions. Section 7 briefly concludes, and all the proofs are gathered

in the Appendix.

Before we conclude this introduction, we mention closely related work in more abstract settings of

linear ill-posed inverse problems. First, there exist many papers and some monographs devoted to

constructing estimators and deriving optimal convergence rates in the deterministic noise framework

with a known operator (or a known operator up to a deterministically perturbed error with a

specified error rate). See, e.g., Engl, Hanke and Neubauer (1996), Nair, Pereverzev and Tautenhahn

(2005) and the references therein. Second, there are also many results on minimax optimal rates in

mean integrated squared error loss in the random white noise framework with a known operator;

see, e.g., Cohen, Hoffmann and Reiß (2004), Bissantz, Hohage, Munk and Ruymgaart (2007) and

the references therein. Third, there are a few recent papers on constructing estimators that achieve

optimal convergence rates in the presence of a white noise and an unknown operator, but assuming

the existence of an estimator of the operator with a rate. See, e.g., Efromovich and Koltchinskii

(2001) and Hoffmann and Reiß (2007).
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2 NPIV models and basic regularity conditions

We first specify the NPIV regression model as

Yi = h0(Xi) + Ui, E[Ui |Wi] = 0, i = 1, . . . , n, (2.1)

with observations {(Xi, Yi,Wi)}
n
i=1, a random sample from the unknown joint distribution of

(X,Y,W ). Here Y is a scalar dependent variable, X is a vector of endogenous regressors in R
d

and W is a vector of instrumental variables in R
d that satisfy the property E[U |W ] = 0. (For the

ease of presentation we assume that X and W do not contain any common variables, and the con-

ditional density of X given W is well-defined). The parameter of interest is the unknown structure

function h0(•), while the joint law LUWX of (U,W,X) is an unknown nuisance function.

Let us introduce the Hilbert spaces

L2
X = {h : R

d → R | ‖h‖2
X := E[h2(X)] <∞},

L2
W = {g : R

d → R | ‖g‖2
W := E[g2(W )] <∞}.

Since the conditional distribution of X given W is unspecified, the conditional expectation operator

(Kh)(w) := E[h(X) |W = w]

is unknown, except that it is an integral operator mapping from L2
X to L2

W . This operator is the key

in the construction of estimators of h0 because by conditioning onW in (2.1) and using E[U |W ] = 0

we obtain

E[Y |W ] = E[h0(X) |W ] + E[U |W ] = Kh0(W ).

Consequently, by regressing Y on W , estimating K and using this relationship we can hope to

retrieve an estimator of h0.

Let H denote a subset of L2
X and assume h0 ∈ H . Here H captures all the prior information

(such as the smoothness and/or shape properties) about the unknown structure function h0. To

ensure that there is a unique solution h0 ∈ H for the NPIV model (2.1), in this paper we assume

that the operator K satisfies the following restriction:

{h ∈ H : Kh = 0} = {0}. (2.2)

Depending on the choice of the function class H , the identification condition (2.2) imposes different

restrictions on the operator K (or equivalently, on the conditional density of X given W ). For

example, if H = L2
X , then condition (2.2) becomes the standard identification condition that K
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is injective, i.e., N (K) := {h ∈ L2
X : Kh = 0} = {0}, (or equivalently, the conditional density

of X given W is complete); see, e.g., Newey and Powell (2003), Darolles, Florens and Renault

(2002), Carrasco, Florens and Renault (2007). If H = {h ∈ L2
X : supx |h(x)| 6 1}, then condition

(2.2) corresponds to assume that the conditional density of X given W is bounded complete;

see, e.g., Chernozhukov and Hansen (2005), Chernozhukov, Imbens and Newey (2007), Blundell,

Chen and Kristensen (2007). For additional results on identification in semi/nonparametric models

with endogeneity, see, e.g., Blundell and Powell (2003), Florens (2003), Florens, Johannes and Van

Bellegem (2007) and the references therein.

2.1 Basic regularity conditions

In this paper we would like to establish a minimax risk lower bound for the NPIV model, that is,

we would like to derive a result of the form: there are a finite constant c > 0 and a rate function

δn ↓ 0 as n ↑ ∞ such that

lim
n→∞

(
δ−1
n inf

ĥn

sup
h∈H

E(LUWX ,h)[‖ĥn − h‖2
X ]

)
> c

where the infimum is over all possible estimators ĥn for h ∈ H . Note that a NPIV model (2.1)

is completely specified by prescribing the joint law LUWX of (U,W,X) and the structure function

h. This lower bound δn will be valid for quite general forms of LUWX , independently of knowing

or not knowing it. In particular, although the mean squared error loss and the class of structure

functions H will be defined in terms of the distribution of X, there is no need to assume any

explicit properties of this distribution to derive a minimax lower bound.

We would also like to present some particular estimators that attain the lower bound rate δn.

However, before we could establish any minimax lower and upper bounds, it is clear that we have to

impose some conditions on the class of structure functions H and on the conditional expectation

operator K. In this paper, we implicitly assume that the prior information about H already

includes some regularity properties that could be described in terms of a Hilbert scale generated

by a conveniently chosen (by the researcher) operator B. The regularizing action of the conditional

expectation operator K would also be described as some smoothness relative to the known operator

B. Formally, let B : Dom(B) ⊆ L2
X → L2

X be a densely defined self-adjoint, strictly positive definite,

and unbounded operator (such as differential operators with boundary constraints). For the ease

of presentation we assume that B has eigenvalues νk ↑ ∞ with corresponding L2
X-normalized

eigenfunctions {uk} which then form an orthonormal basis of L2
X . For non-discrete spectrum our

results will still hold, but the presentation would become more technical, using spectral measures

and abstract functional calculus.
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Throughout this paper we denote by H (r,R) a subset of H ⊆ L2
X , and assume the following:

2.1 Assumption (approximation condition). There are finite constants r,R > 0 such that H (r,R)

consists of functions h satisfying

inf
{ak}:

P
k

a2
k
<∞

‖h−

m∑

k=1

akuk‖
2
X 6 R2ν−2r

m+1 for all m ∈ N . (2.3)

Note that the left-hand side of (2.3) gives the error in approximating h optimally by an element of

them-dimensional space spanned by the basis functions {u1, . . . , um}. So, Assumption 2.1 character-

izes the regularity (or smoothness) of the structure functions in H (r,R) by the L2
X -approximation

error rates when they are approximated by the basis {uk} associated with B. Clearly, Assumption

2.1 will give a bound on the bias and implies that H (r,R) is a compact set in L2
X . For many

typical smooth function classes and basis functions like the Fourier basis, wavelets or splines the

approximation error rates are well known.

For any s > 0 and h ∈ Dom(Bs) ⊆ L2
X we write ‖h‖s := ‖Bsh‖X . Let Hs denote the completion

of Dom(Bs) under the norm ‖•‖s. {H
s}s>0 is called a Hilbert scale generated by B (see, e.g., Engl,

Hanke and Neubauer (1996) for its detailed properties). For any finite constants r,R > 0, we define

a Sobolev-type ellipsoid as Hr
R := {h ∈ Hr, ‖h‖r 6 R}. Since

Hr
R =

{
h =

∞∑

k=1

〈h, uk〉Xuk, ‖h‖
2
r =

∞∑

k=1

ν2r
k 〈h, uk〉

2
X 6 R2

}
,

it is clear that Hr
R is a subset of H (r,R). It is also easy to see that the following hyperrectangle

Θr
R′ in L2

X is a subset of H (r,R) for R′ > 0 sufficiently small:

Θr
R′ :=

{
h =

∞∑

k=1

〈h, uk〉Xuk, |〈h, uk〉X | 6 R′ν−β
k

}
, β = r + 1

2 >
1
2 .

Let us now formulate the mapping properties of the conditional expectation operator K in terms

of the (generalized) Hilbert scale generated by B.

2.2 Assumption (link condition). There are a continuous increasing function ϕ : R
+ → R

+ and

a constant M > 0 such that ‖Kh‖W 6 M‖[ϕ(B−2)]1/2h‖X for all h ∈ L2
X .

Assumption 2.2 is in fact equivalent to the range inclusion condition:

ran(|K|) ⊆ ran([ϕ(B−2)]1/2) with |K| := (K∗K)1/2,

where K∗ denotes the Hilbert space (L2
X) adjoint of K. For the NPIV models, under mild condi-

tions, the conditional expectation operator K is a compact operator. Thus the self-adjoint compact
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operator K∗K has the eigenvalue-eigenfunction decomposition {λk, ek}, where the eigenvalues are

arranged in non-increasing order: λk > λk+1 > ... > 0 and λk tends to zero as k ↑ ∞. Then

Assumption 2.2 can be equivalently restated in terms of two possibly different orthonormal bases

{ek} and {uk} of L2
X :

∞∑

k=1

λk〈h, ek〉
2
X 6 M2

∞∑

k=1

ϕ(ν−2
k )〈h, uk〉

2
X for all h ∈ L2

X . (2.4)

2.3 Remark. We can rewrite Assumptions 2.1 and 2.2 without specifying the operator B explicitly.

All we require are the existence of an orthonormal basis {uk} in L2
X and a sequence of increasing

positive real numbers {νk} such that equations (2.3) and (2.4) hold. In fact, we can then construct

the self-adjoint unbounded operator B according to

Bh =

∞∑

k=1

νk〈h, uk〉Xuk,

with Dom(B) = {h ∈ L2
X :

∑∞
k=1 ν

2
k〈h, uk〉

2
X <∞}.

2.4 Example. Suppose that X is uniformly distributed on the interval [0, 1] and let Bf(x) :=

−f ′′(x) for all f ∈ L2([0, 1]) with f ′′ ∈ L2([0, 1]) and with periodic boundary conditions. Then B

has (complex-valued) eigenfunctions uk(x) = exp(2πkix) with eigenvalues νk = (2πk)2 such that

Hr = {f ∈ L2([0, 1]) :
∑

k∈Z

ν2r
k |〈f, uk〉|

2 <∞}

is the classical L2-Sobolev space H2r
per of regularity (smoothness) 2r with periodic boundary con-

ditions. See, e.g., Edmunds and Evans (1987) for many examples of generating smooth function

spaces from differential operators.

For the typical choice ϕ(t) = ta for some a > 0, Assumption 2.2 translates to ‖Kh‖W 6

M‖B−ah‖X , which means intuitively that the operator K regularizes at least as much as B−a.

In the case Bf(x) := −f ′′(x) the operator K acts like integrating at least (2a)-times, i.e. maps L2

to the L2-Sobolev space of regularity 2a.

In the statistics literature, for the standard nonparametric mean regression model (i.e., the model in

which K is the identity operator), the minimax risk lower and upper bounds have been established

in mean integrated squared error loss for various classes of functions H such as a Sobolev ball

(ellipsoid), a Hölder ball (hyperrectangle) or a Besov ball (ellipsoid or hyperrectangle or Besov

body); see, e.g., Donoho, Liu and MacGibbon (1990), Yang and Barron (1999) and the references

therein. As shown in these papers, what matters for minimax risk lower and upper bounds for

nonparametric mean regression estimation is the complexity of the class of functions H that can be
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measured in terms of best finite dimensional approximation numbers. This motivates us to impose

Assumption 2.1. However, since the basis {uk} (of the operator B) used to construct the best finite

dimensional approximations for the class of functions H may differ from the eigenfunction basis

{ek} (of the operator K∗K), we have to impose Assumption 2.2 to link these two.

We shall refer to Assumptions 2.1 and 2.2 as the two basis regularity conditions; and sometimes

call Assumption 2.1 the approximation condition and Assumption 2.2 the link condition. Both

assumptions are satisfied by the ones imposed in the literature, such as those in Cohen, Hoffmann

and Reiß (2004), Efromovich and Koltchinskii (2001), Hoffmann and Reiß (2007), Blundell, Chen

and Kristensen (2007), Chen and Pouzo (2007) and others. In the next subsection we show that

these two basic regularity conditions are automatically satisfied by the so-called “general source

condition”, which in turn are satisfied by conditions imposed in Hall and Horowitz (2005) and all

the other papers using the general source condition.

2.2 Relation to source conditions

In the numerical analysis literature on ill-posed inverse problems it is common to measure the

smoothness (regularity) of the function class H according to the spectral representation of the

operator K∗K. Denote by ‖K‖ := suph:‖h‖X61 ‖Kh‖W the operator norm. The so-called “general

source condition” assumes that there is a continuous function ψ defined on [0, ‖K‖2] with ψ(0) = 0

and λ−1/2ψ(λ) non-decreasing such that

Hsource :=
{
h = ψ(K∗K)g, g ∈ L2

X , ‖g‖
2
X 6 R

}
, for a finite constant R, (2.5)

and the original “source condition” corresponds to the choice ψ(λ) = λ1/2 (see Engl, Hanke and

Neubauer (1996)). If K∗K is compact with eigenvalue-eigenfunction system {λk, ek}, then (2.5) is

equivalent to

Hsource =
{
h =

∞∑

k=1

〈h, ek〉Xek,

∞∑

k=1

〈h, ek〉
2
X

ψ2(λk)
6 R2

}
.

Therefore the general source condition implies our Assumptions 2.1 and 2.2 by setting uk = ek and

ν−r
k = ψ(λk) for all k > 1, and ϕ(B−2) = K∗K.

In the econometrics literature on NPIV estimation, Darolles, Florens and Renault (2002) impose

a smoothness condition on the true structure function h0 that is closely related to the source

condition. Precisely, they assume h0 ∈ HDFR, where

HDFR =
{
h ∈ L2

X ,
∞∑

k=1

〈h, ek〉
2
X

(λk)a
<∞

}
, for some a > 1. (2.6)
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Darolles, Florens and Renault (2002) use this assumption h0 ∈ HDFR to establish the convergence

rate of their kernel-based Tikhonov regularized estimator in mean squared error metric Eh0[‖ĥ −

h0‖
2
X ]. This rate, however, will not hold uniformly over h0 ∈ HDFR, since the series in (2.6) is not

uniformly bounded away from infinity, which is the role of R ∈ (0,∞) in the definition of Hsource.

Hall and Horowitz (2005) assume that h0 belongs to a hyperrectangle in L2
X , using the eigenfunc-

tions {ek} of the operator K∗K as a basis:

HHH =
{
h =

∞∑

k=1

〈h, ek〉Xek, |〈h, ek〉X | 6 R′k−β
}
, (2.7)

which, when β > 1/2 plays the role of r + 1/2, implies our Assumptions 2.1 and 2.2 by setting

uk = ek, νk = k for all k > 1, and ϕ(B−2) = K∗K. In addition, Hall and Horowitz (2005) also

assume that the eigenvalues {λk} of the operator K∗K are such that λk > const.k−α for some

α > 1 and 2β > α > β − 1
2 , which suggests that we could set ϕ(t) = tα/2.

3 The lower bound

In this section we shall establish a minimax risk lower bound for the NPIV model under the two basic

regularity conditions stated in Section 2. We derive this result by first establishing that the NPIV

model is no more informative than the reduced form nonparametric indirect regression (NPIR)

model. First, the following abstract assumption ensures a certain complexity of the statistical

NPIV model and permits the residuals of Y given W to be Gaussian. Recall that LZ denotes the

law of the random vector Z.

3.1 Assumption. Let σ0 > 0 be a finite constant. Let C be a (possibly very large) set of elements

(LUWX , h) such that the following property holds:

• For all h ∈ H , there is a law LUWX with (LUWX , h) ∈ C such that LWY is determined by

LUWX and h, and that

Vi := Yi − E[Yi |Wi] = h(Xi) − (Kh)(Wi) + Ui

given Wi is N(0, σ2(Wi))-distributed with σ2(Wi) > σ2
0.

3.2 Example. A typical NPIV model (2.1) satisfying Assumption 3.1 is generated by taking Wi

from an arbitrary probability distribution LW , then generating Xi according to a conditional density

of X given W , generating Vi according to N(0, σ2(Wi)), and defining

Ui := (Kh)(Wi) − h(Xi) + Vi.
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3.1 Reduction from NPIV model to NPIR model

For each NPIV model, we specify the reduced form NPIR model as

Yi = (Kh)(Wi) + Vi, i = 1, . . . , n,

with (Wi, Vi) i.i.d., LV |W=w = N(0, σ2(w)), h ∈ H the unknown structure function, and K

a known injective operator from L2
X to L2

W . The observations corresponding to the NPIR are

{(Yi,Wi)}
n
i=1. We shall now formally prove, that the NPIV model is statistically more demanding

than an indirect regression model with known operator K. We compare statistical experiments in

a decision-theoretic sense (see Le Cam and Yang (2000)), and therefore, have to ensure first that

the classes of parameters are compatible.

3.3 Definition. Let Assumption 3.1 hold. The NPIR model class C0 consists of all model param-

eters (LW ′ , σ(•), h) such that there is (LUWX , h) ∈ C with the following properties: LW = LW ′,

σ2(w) > σ2
0 > 0, the conditional law LX|W is prescribed according to K, and LU |WX is arbitrary

among the conditions imposed in C .

3.4 Lemma. The NPIR model is more informative than the NPIV model in the sense that for

each estimator ĥn for the NPIV model there is an estimator h̃n for the NPIR model with

sup
(LW ,σ(•),h)∈C0

E(LW ,σ(•),h)[‖h̃n − h‖2
X ] 6 sup

(LUWX ,h)∈C

E(LUWX ,h)[‖ĥn − h‖2
X ].

3.2 The lower bound

We now formally present the minimax risk lower bound for the NPIR and the NPIV models in mean

squared error loss. We establish the lower bound by considering asymptotically least favorable Bayes

priors, more specifically, by applying Assouad’s cube technique; see e.g. Korostelev and Tsybakov

(1993) or Yang and Barron (1999). In this paper we use the notation an ≍ bn to mean that there

is a finite positive constant c such that can 6 bn 6 c−1an.

Since suph∈H (r,R) Eh[‖ĥn − h‖2
X ] > suph∈Hr

R
Eh[‖ĥn − h‖2

X ], it suffices to establish the lower bound

for functions in Hr
R, a subset of H (r,R).

3.5 Theorem. Let Assumptions 2.1 and 2.2 hold. For the NPIR model we have the following

minimax risk lower bound:

inf
ĥn

sup
h∈Hr

R

Eh[‖ĥn − h‖2
X ] >

σ2
0

4 exp(4M)δn, δn := n−1
m∑

k=1

[ϕ(ν−2
k )]−1,
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where the infimum runs over all possible estimators ĥn based on n observations, and m is the largest

possible integer satisfying

σ2
0n

−1
m∑

k=1

ν2r
k [ϕ(ν−2

k )]−1
6 R2.

(1) Mildly ill-posed case: Let ϕ(t) = ta and νk ≍ kǫ for some a, ǫ > 0. If m ≍ n1/(2rǫ+2aǫ+1), then

δn ≍ n−2r/(2r+2a+ǫ−1).

(2) Severely ill-posed case: Let ϕ(t) = exp(−t−a/2), νk ≍ kǫ for some a, ǫ > 0. If m = c log(n)1/aǫ

with a sufficiently small c > 0, then δn ≍ (log n)−2r/a.

The next corollary follows directly from Lemma 3.4 and Theorem 3.5; hence we omit its proof.

3.6 Corollary. Let Assumptions 2.1, 2.2 and 3.1 hold. For the NPIV model we have the same

minimax risk lower bound:

inf
ĥn

sup
h∈Hr

R

Eh[‖ĥn − h‖2
X ] >

σ2
0

4 exp(4M)δn, with δn given in Theorem 3.5,

where the infimum runs over all possible estimators ĥn based on n observations.

3.7 Remark. For the proof of the lower bound we have to consider the likelihood between the

observations. This is why we require Gaussianity. Nevertheless, the proof works the same for other

error densities, but bounding the Kullback-Leibler or Hellinger distance between alternatives might

be more cumbersome.

Let us also mention that the proof strategy can also yield a lower bound for convergence in probability:

inf
ĥn

sup
h∈Hr

R

Ph

(
δ−1
n ‖ĥn − h‖2

X >
σ2
0

4 exp(4M)

)
> c > 0, with δn given in Theorem 3.5,

cf. Korostelev and Tsybakov (1993).

Note that Assumption 2.2 is automatically satisfied under the general source condition with K∗K =

ϕ(B−2). Following the proof of Theorem 3.5, we immediately obtain:

3.8 Remark. Suppose that Assumption 2.1 is satisfied with h ∈ Hsource and uk = ek, ν
−r
k = ψ(λk)

for all k > 1. Let ϕ(B−2) = K∗K. Then, for NPIR model and for NPIV model (under Assumption

3.1), we have the same minimax risk lower bound:

inf
ĥn

sup
h∈Hsource

Eh[‖ĥn − h‖2
X ] >

σ2
0

4 exp(4M)δn, with δn given in Theorem 3.5,
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where the infimum runs over all possible estimators ĥn based on n observations. An equivalent way

to determine the lower bound δn is to choose the largest possible integer m such that

δn = n−1
m∑

k=1

λ−1
k , σ2

0n
−1

m∑

k=1

[ψ(λk)]−2λ−1
k 6 R2.

4 An upper bound for the NPIR model

We prove an upper bound for the NPIR model. The aim of this section is to convince the reader

that the lower bounds given in Section 3 are rate-optimal, and to provide an easy method to attain

these rates. Again we assume that B has eigenvalues νk ↑ ∞ with corresponding L2
X-normalized

eigenfunctions (uk) which then form an orthonormal basis of L2
X . For m > 1 we define our estimator

as

ĥn :=

m∑

k=1

η̂kuk, η̂k :=
1

n

n∑

i=1

Yi((K
∗)−1uk)(Wi). (4.1)

This simple projection procedure using the basis {uk} (of B) does not seem to have been studied

before. It is a natural generalization of the well-known spectral cut-off method using the eigen-

function basis {ek} of K∗K. Given the prior information about H (r,R), this is a mathematically

satisfactory construction.

For the upper bound we impose the following assumptions on the NPIR model.

4.1 Assumption.

(1) There is a finite σ1 > 0 such that σ(w) 6 σ1 for all w ∈ supp(LW );

(2) There is a finite S > 0 such that ‖Kh‖∞ = supw∈supp(LW )|(Kh)(w)| 6 S for all h ∈ H (r,R).

Assumption 4.1 is typically assumed in papers on nonparametric estimation of ill-posed indirect

regression; see, e.g. Bissantz, Hohage, Munk and Ruymgaart (2007). When K is the identity opera-

tor, Assumption 4.1(2) becomes to require that ‖h‖∞ 6 S for all h ∈ H (r,R), which is a condition

imposed in Yang and Barron (1999, theorems 6 and 7) to derive their minimax rate for a standard

nonparametric regression model.

4.2 Assumption (reverse link condition). There is a finite c > 0 such that ‖Kh‖W >

c‖[ϕ(B−2)]1/2h‖X for all h ∈ L2
X .

Assumption 4.2 is the reverse condition of Assumption 2.2 and is often imposed in papers on ill-

posed inverse problems. We shall sometimes call Assumptions 2.2 and 4.2 together as the exact link

(or exact range) condition. See Subsection 4.2 for a relaxation of this condition.
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4.3 Proposition. For the NPIR models, suppose that Assumptions 2.1, 4.1 and 4.2 hold. Then

the estimator ĥn defined in (4.1) satisfies

sup
h∈H (r,R)

Eh[‖ĥn − h‖2
X ] 6 ν−2r

m+1R
2 + 2n−1(S2 + σ2

1)c
−2

m∑

k=1

[ϕ(ν−2
k )]−1.

If m = m(n) is such that n−1
∑m

k=1 ν
2r
k [ϕ(ν−2

k )]−1 ≍ 1, then, under Assumption 2.2, this estimator

ĥn is rate-optimal in the minimax sense: there is a finite constant C > 0 such that

sup
h∈H (r,R)

Eh[‖ĥn − h‖2
X ] 6 Cν−2r

m+1 ≍ n−1
m∑

k=1

[ϕ(ν−2
k )]−1 ≍ δn, with δn given in Theorem 3.5.

(1) Mildly ill-posed case: Let ϕ(t) = ta and νk ≍ kǫ for some a, ǫ > 0. If m ≍ n1/(2rǫ+2aǫ+1), then

δn ≍ n−2r/(2r+2a+ǫ−1).

(2) Severely ill-posed case: Let ϕ(t) = exp(−t−a/2), νk ≍ kǫ for some a, ǫ > 0. If m = c log(n)1/aǫ

with a sufficiently small c > 0, then δn ≍ (log n)−2r/a.

4.4 Remark. As the proof reveals, the upper bound does not require that the errors are Gaussian,

the existence of second moments suffices.

4.5 Remark. When K is the identity operator, the NPIR model becomes the standard nonparamet-

ric mean regression model, and Assumption 2.2 is automatically satisfied with ϕ() being a constant,

then Theorem 3.5 and Proposition 4.3 together reproduce the well-known minimax lower and up-

per bounds for the nonparametric mean regression model (see, e.g., theorem 7 of Yang and Barron

(1999)), in which δn ≍ m
n , and m is the largest possible integer satisfying ν−2r

m+1 ≍ m
n .

Comparing the minimax optimal rates in mean integrated squared error loss for the nonpara-

metric mean regression model and for the NPIR model, we see the squared bias is of the same

order (ν−2r
m+1), but the variance blow up from m

n for the nonparametric mean regression model to

n−1
∑m

k=1[ϕ(ν−2
k )]−1 for the NPIR model.

Notice that the minimax optimal rate δn ≍ (log n)−2r/a for the severely ill-posed case is independent

of ǫ (hence independent of the dimension d of X). For the mildly ill-posed case, when ϕ(t) = ta and

νk ≍ kǫ for some a > 0 and ǫ = 1/d, Theorem 3.5 and Proposition 4.3 together give the minimax

optimal rate δn = n−2r/(2r+2a+d) for the NPIR models. This rate is well known for the special case

when H (r,R) is a d-dimensional Sobolev ball Hr
R and the operator K is elliptic with ill-posedness

degree a (i.e., ‖Kh‖W ≍ ‖B−ah‖X for all h ∈ L2
X); see, e.g., Cohen, Hoffmann and Reiß (2004).

Note that Assumptions 2.2 and 4.2 are automatically satisfied under the general source condition

with K∗K = ϕ(B−2). Applying Proposition 4.3 and Remark 3.8, we immediately obtain:

12



4.6 Remark. For the NPIR models, suppose that Assumption 4.1 holds, and Assumption 2.1 is

satisfied with h ∈ Hsource and uk = ek, ν
−r
k = ψ(λk) for all k > 1. Let ϕ(B−2) = K∗K. Then the

estimator ĥn defined in (4.1) with uk = ek reaches the minimax rate uniformly over h ∈ Hsource:

sup
h∈Hsource

Eh[‖ĥn − h‖2
X ] 6 Cδn, with δn and m given in Remark 3.8.

In the literature on ill-posed inverse problems with known operator K, there are available many

other estimation procedures (like Tikhonov’s method) that employ source conditions; some of which

lead to rate-optimal estimators only for mildly ill-posed case. See, e.g., Bissantz, Hohage, Munk

and Ruymgaart (2007) and Florens, Johannes and Van Bellegem (2007) for recent results.

4.1 Relaxation of the exact link condition

For the minimax risk lower bound we impose Assumption 2.2, and for the upper bound we use

Assumption 4.2. Together, these two assumptions require that the operator K satisfies

c‖[ϕ(B−2)]1/2h‖X 6 ‖Kh‖W 6 M‖[ϕ(B−2)]1/2h‖X for all h ∈ L2
X ,

which is equivalent to

ran([ϕ(B−2)]1/2) = ran(|K|). (4.2)

This is a standard condition imposed even in books and papers on ill-posed inverse problems with

deterministic errors; see, e.g., Engl, Hanke and Neubauer (1996), Nair, Pereverzev and Tautenhahn

(2005) and the references therein. This condition usually holds when K acts exactly along certain

function classes; see Section 6 for such an example. Moreover, this exact range condition 4.2 is

automatically satisfied under the source condition with K∗K = ϕ(B−2). However, Assumption 4.2

may fail more generally. Luckily, this assumption is not strictly necessary.

Let us indicate one possibility how Assumption 4.2 can be relaxed to requiring

ran[ϕ(B−2)]1/2 ⊆ ran|K| + L, for some finite-dimensional linear space L.

To keep it simple, we consider the case that the subspace L is spanned by one eigenfunction uℓ of

B with uℓ /∈ ran|K| and 1 6 ℓ 6 m. Then the simple estimator ĥn using η̂ℓ given in (4.1) is no

longer well defined, but we can consider for some v ∈ L2
W the estimator

η̃ℓ :=
1

n

n∑

i=1

Yiv(Wi), h̃n :=
m∑

k=1,k 6=ℓ

η̂kuk + η̃ℓuℓ.

13



Following the bias variance decomposition in the proof of Proposition 4.3, we obtain

E[(η̃ℓ − 〈h, uℓ〉X)2] 6 (〈Kh, v〉W − 〈h, uℓ〉X)2 + 2n−1(S2 + σ2
1)‖v‖

2
W

≍ 〈h,K∗v − uℓ〉
2
X + n−1‖v‖2

W . (4.3)

The definition of Hr
R implies with some uniform constant C > 0

sup
h∈Hr

R

E[(η̃ℓ − 〈h, uℓ〉X)2] 6 C(R2‖B−r(K∗v − uℓ)‖
2
X + n−1‖v‖2

W ). (4.4)

¿From inequality (4.4), it is easy to derive that this error in estimating the coefficient 〈h, uℓ〉X is

minimized by

v = (KK∗ + n−1R−2B2r)−1Kuℓ,

which is always well-defined. Consequently, in terms of minimax optimal rate over the class of

functions Hr
R, the rate in Proposition 4.3 does not deteriorate if we use η̃ℓ instead of η̂ℓ and its

error bound

n−1‖(KK∗ + n−1R−2B2r)−1Kuℓ‖
2
W

is not larger than the minimax optimal rate. See Section 6 for a concrete example.

5 An upper bound for the NPIV model

We now provide an upper bound for the NPIV model. For the NPIV model additional considerations

due to the unknown conditional expectation operator are necessary. It is, of course, more complex

to construct an estimator that is rate-optimal for the NPIV model than for the NPIR model,

which is why the approaches in the literature are more diverse and require different additional

assumptions. Here, we restrict ourselves to presenting a simple estimator to illustrate that it is

possible to construct a rate-optimal estimator for the NPIV model in both mildly ill-posed and

severely ill-posed cases based on the SMD estimator of Newey and Powell (2003), Ai and Chen

(2003) and Blundell, Chen and Kristensen (2007). First, for each integer J > 1, we denote by

span{p1, ..., pJ} a J-dimensional linear subspace of L2
W that becomes dense in L2

W as J → ∞. Let

P Jn(w) = (p1(w), ..., pJn
(w))′ and P = (P Jn(W1), ..., P

Jn(Wn))′. We compute a sieve least squares

estimator of E[Y − h(X)|W = •] as

Ê[Y − h(X)|W = •] =

n∑

t=1

{Yt − h(Xt)}P
Jn(Wt)

′(P′P)−1P Jn(•).
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For each integer m > 1, we denote by Hm := span{ψ1, ..., ψm} an m-dimensional linear subspace

of L2
X that becomes dense in L2

X as m → ∞. Then we compute the SMD estimator of the true

structure function h0 as

ĥn = argminh∈Hm(n)∩H (r,R)
1

n

n∑

i=1

{
Ê[Y − h(X)|W = Wi]

}2
. (5.1)

Depending on the prior information about H (r,R), sometimes one may compute ĥn in closed

form. For example, if H (r,R) = Hr
R and the density of X is bounded below and above by positive

constants, then

ĥn(x) =

m∑

k=1

π̂kψk(x) = ψm(x)′Π̂, (5.2)

Π̂ =
(
Ψ′P(P′P)−1P′Ψ + λ̂C

)−1
Ψ′P(P′P)−1P′Y, (5.3)

with Ψ = (ψm(X1), ..., ψ
m(Xn))′, Y = (Y1, ..., Yn)′, the penalization matrix C =

∫
{[Brψm(x)][Brψm(x)]′}dx and λ̂ satisfies Π̂′CΠ̂ = R2.

In addition to the assumptions on the NPIR models, we impose the following:

5.1 Assumption. The basis {ψk} is a Riesz basis associated with the operator B, that is,
∑∞

k=1〈h, ψk〉
2
X ≍

∑∞
k=1〈h, uk〉

2
X for all h ∈ L2

X .

Assumption 5.1 allows for the use of a Riesz basis {ψk} instead of the ideal orthonormal basis

{uk} to approximate the unknown structure function h ∈ H (r,R) with the same order of the

approximation errors. Of course in applications, we need some information about the tail behavior

of the density of X before we can construct such a basis. For example, if we know that the density

of X is bounded above and below by finite positive constants , then we could use wavelets as the

{ψk}.

5.2 Assumption.

(1) E[Y −Πm(h(X))|W = •] belongs to ΛrK
c (W ) (Hölder ball of regularity rK) for any Πm(h) ∈ Hm;

(2) (i) the smallest and the largest eigenvalues of E{P Jn(W )P Jn(W )′} are bounded and bounded

away from zero for each Jn; (ii) P Jn(W ) is a tensor product of either a cosine series or a B-spline

basis of order γb or a wavelet basis of order γb, with γb > rK > d/2;

(3) the density of W is continuous and bounded away from zero over its support W , which is a

compact connected subset in R
d with Lipschitz continuous boundaries and non-empty interior;

(4) (i) Jn → ∞ and J2
n/n → 0; (ii) limn

Jn

m(n) = c ∈ (1,∞) and Jn > m(n).

Assumption 5.2 implies that the sieve least square estimate Ê[h(X)|W = •] of E[h(X)|W = •]

performs well; see e.g., Blundell, Chen and Kristensen (2007) for details.
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5.3 Theorem. For the NPIV models, suppose that Assumptions 2.1, 2.2, 4.1, 4.2, 5.1 and 5.2

hold. Then the estimator ĥn defined in (5.1) satisfies

‖ĥn − h‖2
X 6 Cmax

{
ν−2r

m+1,
m

n
[ϕ(ν−2

m )]−1
}

uniformly over h ∈ H (r,R) except on an event whose probability tends to zero as n ↑ ∞. If

m = m(n) is such that n−1
∑m

k=1 ν
2r
k [ϕ(ν−2

k )]−1 ≍ 1, then this estimator ĥn is rate-optimal in the

minimax sense: there is a finite constant C > 0 such that

‖ĥn − h‖2
X 6 Cν−2r

m+1 ≍
m

n
[ϕ(ν−2

m )]−1 ≍ δn, with δn given in Theorem 3.5,

uniformly over h ∈ H (r,R) except on an event whose probability tends to zero as n ↑ ∞.

(1) Mildly ill-posed case: Let ϕ(t) = ta and νk ≍ kǫ for some a, ǫ > 0. If m ≍ n1/(2rǫ+2aǫ+1), then

δn ≍ n−2r/(2r+2a+ǫ−1).

(2) Severely ill-posed case: Let ϕ(t) = exp(−t−a/2), νk ≍ kǫ for some a, ǫ > 0. If m = c log(n)1/aǫ

with a sufficiently small c > 0, then δn ≍ (log n)−2r/a.

This minimax rate theorem appears to be new in the literature, and can be proved by slightly

modifying the proof of Blundell, Chen and Kristensen (2007) for their theorem 2. Hall and Horowitz

(2005) obtained minimax optimal rate suph∈HHH
Eh[‖ĥn − h‖2

X ] 6 Cδn for their estimators in the

mildly ill-posed case for the class of functions HHH defined in (2.7). Hoffmann and Reiß (2007)

propose a wavelet estimator in the case of an unknown operator K that is elliptic with ill-posedness

degree a. They assume there exists an estimator of K with specified rate, and their class of functions

H (r,R) is a Besov ball that could be bigger than the function class defined in our Assumption 2.1,

but they do not consider severely ill-posed case.

6 More on regularity conditions

In this section, we use examples to discuss the pros and cons of the approach of imposing two

basic regularity conditions (the approximation and the link conditions) versus the other approach

of using the general source condition. To simplify the discussion, here we assume the operator K is

known. In the first class of examples, the operator K has very smooth eigenfunction basis (in the

sense that its eigenfunctions are many times differentiable), while in the second class of examples,

the operator K has eigenfunctions that are not differentiable.
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6.1 Examples of K having infinitely times differentiable eigenfunctions

Suppose that the {Wi}
n
i=1 are uniformly distributed on [0, 1] andK is a circular convolution operator

on L2([0, 1]): Kh(w) =
∫ 1
0 k(x−w)h(x)dx with a 1-periodic function k that satisfies k(−x) = k(x)

and has Fourier coefficients |Fk(m)| = |
∫ 1
0 k(x) cos(mx) dx| ≍ (1 + |m|)−a. Then K is a positive-

definite self-adjoint operator which is diagonalized by the Fourier basis.

Source condition: In this canonical case the exact link between K andB is easily established with

B = K−1, ϕ(t) = t hence ‖Kh‖W = ‖[ϕ(B−2)]1/2h‖X for all h ∈ L2([0, 1]). The smoothness

of the unknown function h is also described using B = K−1; hence the Hilbert scale space

Hr (generated by B) is equal to the classical periodic Sobolev space Hra
per of smoothness (or

regularity) ra. Applying Remark 4.6, we obtain minimax optimal rate for this scale of periodic

Sobolev spaces.

Approximation + link conditions: Suppose {uk}k>1 is an orthonormal basis of L2([0, 1]) such

that ‖Kg‖2
L2([0,1]) ≍

∑∞
k=1 k

−2a〈g, uk〉
2. A typical example is given by sufficiently regular

periodized wavelet bases (see Cohen, Daubechies and Vial (1993)). Then we can define

Bg :=
∑

k>1

k〈g, uk〉uk,

and the Hilbert scale spaces Hr can be interpreted as approximation spaces for the basis

(uk). In the convolution example we obtain ‖Kg‖W ≍ ‖B−ag‖X . Consequently, the exact

link conditions (assumptions 2.2 and 4.2) between K and B hold with ϕ(t) = ta. Applying

Proposition 4.3, we obtain minimax optimal rate for the Hilbert scale space Hr generated by

B.

The Hilbert scale of approximation spaces generated by B does not necessarily coincide with the

Hilbert scale generated by K. The most pronounced example is the case a < 1/2, where all

non-periodic wavelets on an interval still satisfy ‖Kg‖2
L2([0,1]) ≍

∑∞
k=1 k

−2a〈g, uk〉
2 (see Cohen,

Daubechies and Vial (1993)). Hence, the approximation spaces for unknown true structure func-

tion need not exhibit any boundary condition. This means that a smooth, but non-periodic function

on [0, 1] will have high regularity r in terms of the approximation space, while it is an element in

periodic Sobolev spaces up to regularity 1/2 only. If we have in mind that our true function h is

smooth, but not periodic, we should therefore rather choose the approximation space approach.

On the other hand, wavelets work well just to some maximal regularity and they will therefore

reconstruct very smooth and periodic functions not as well as the Fourier basis.
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If K is more ill-posed, that is a > 1/2, we can adopt the ideas explained in Subsection 4.2. We

remain in the approximation space framework and use non-periodic compactly supported wavelets

as basis functions {uk}. Only the wavelets ψλ with support at the boundary are not in the periodic

Sobolev spaces Hs
per, s > 1/2. Using some (statistical) kernel function Lh : [−b, b] → R of bandwidth

b, we can consider the periodically smoothed version

ψ̃λ(x) :=

∫ b

−b
ψλ({x− y})Lb(y) dy, x ∈ [0, 1],

where {z} = z − ⌊z⌋ ∈ [0, 1) denotes the fractional part of z ∈ R. If L and ψλ are sufficiently often

differentiable, then ψ̃λ lies in the range Ha
per of K. Using v = K−1ψ̃λ in equation (4.3), standard

kernel estimates (h ∈ Hr
R implies h ∈ Hs

per for all s 6 r and s < 1/2) show that for all h ∈ Hr
R

(with adapted notation)

E[(η̃λ − 〈h, ψλ〉)
2] 6 C1(〈h, ψ̃λ − ψλ〉

2 + n−1‖K−1ψ̃λ‖
2) 6 C2(b

2s + n−1b−2a).

Optimizing over b, we infer that 〈h, ψλ〉 can be estimated at rate n−s/(s+a), which for r > 1/2

is nearly n−1/(2a+1). Since in a wavelet approximation space of dimension 2J only of the order J

wavelets lie at the boundary, the rate in estimating h will be n−s/(s+a) log(n) + n−2r/(2r+2a+1),

which for r > 1
2 + 1

4a is roughly n−1/(2a+1). If we had taken a method based on the source condition

approach (like projection on eigenfunctions of K, or Tikhonov methods) the best achievable rate

would have been roughly n−1/(2a+2).

6.2 Examples of K having non-differentiable eigenfunctions

Depending on applications, it is perfectly conceivable that the eigenfunctions of K are rough while

the basis functions uk of B are smooth (or differentiable). For example, we can use the Haar

basis ψjk(x) = ψ(2jx − k) on L2([0, 1]) (ψ(x) = 1[0,1/2] − 1[1/2,1], j ∈ N0, k = 0, . . . , 2j − 1, and

ψ−1,0 = 1[0,1]) and define – somewhat artificially – in this Haar basis

Kψjk := 2αjψjk.

Then K is self-adjoint with eigenfunctions ψjk, which are step functions. For αr < 1/2, the Hilbert

scale Hr of K (or of the Harr basis) will be a Sobolev space, whereas for any αr > 1/2 this

Hilbert scale Hr will not be described in terms of traditional smoothness. Note that this Hr will

always contain piecewise constant jump functions. Nevertheless, the larger r the less complex is the

function class H (r,R), that is the smaller the approximation error rate. As for the convolution

operator we could instead define the function class H (r,R) in terms of a basis {uk} associated to

B which is smoother and satisfies at the same time the link conditions of Assumptions 2.2 and 4.2.
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In conclusion, we see that rate-optimal methods may behave poorly if the function of interest, the

structure function h, is not regular in the setting for which the method is designed. An important

part of the specification of rate optimality is therefore always the associated function class.

7 Perspectives

In this paper, we clarify the relations between the existing sets of regularity conditions for conver-

gence rates of NPIV regression models. We establish minimax risk lower bounds in mean squared

error loss for the NPIV models under two basic regularity conditions that allow for both mildly

ill-posed and severely ill-posed cases. We also show that the simple SMD estimator achieves the

minimax risk lower bound, hence is rate-optimal for both mildly ill-posed and severely ill-posed

cases.

Many of the ideas in this paper can be easily adapted to treat other kinds of ill-posed inverse

problems in econometrics. For instance, when the problem is mildly ill-posed, Horowitz and Lee

(2007) show that their kernel based Tikhonov regularized estimator of nonparametric quantile

instrumental variables (IV) regression reaches the minimax rate under conditions very similar to

those imposed in Hall and Horowitz (2005) for NPIV regression. Similarly, one could show that the

penalized SMD estimator proposed in Chen and Pouzo (2007) for nonlinear and possibly nonsmooth

nonparametric conditional moment models is also rate-optimal, as their estimator achieves the

minimax risk lower bounds established in our paper for the NPIV regression model.

Once this is established, the intriguing open problem remains how to choose the regularization

parameters adaptively from the data, not knowing the true regularity, and even to select among

the different proposed procedures (e.g. generated by different operators B) in a data-driven way.
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Appendix: Proofs

Proof of Lemma 3.4. Let ĥn = ĥn({(Xi, Yi,Wi)}
n
i=1) be an estimator for the NPIV model.

Knowing the operator K amounts to knowing the conditional law of Xi given Wi. Let

us call the observations in the NPIR model {(Y ′
i ,W

′
i )}

n
i=1 for some (LW , σ(•), h) ∈

C0. We then generate artificially i.i.d. observations X ′
i according to the conditional law

LX|W=w with w = W ′
i . Then the observations {(X ′

i , Y
′
i ,W

′
i )}

n
i=1 follow the law of some
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(LUWX , h) ∈ C because Y ′
i = h(X ′

i) + U ′
i holds with U ′

i = (Kh)(W ′
i ) − h(X ′

i) + V ′
i satis-

fying E[U ′
i |W

′
i ] = 0 and LV ′|W ′=w = N(0, σ2(w)). Consequently, the (randomized) estimator

h̃n({(Y ′
i ,W

′
i )}

n
i=1) := ĥn({(X ′

i , Y
′
i ,W

′
i )}

n
i=1) has the same risk under (LW , σ(•), h) ∈ C0 as ĥn

has under (LU ′W ′X′ , h) ∈ C , and is thus not larger than the maximal risk over C .

Proof of Theorem 3.5. We consider for ϑ = (ϑk) with ϑk ∈ {−1,+1} and a sequence (γk), to

be specified below, the following functions in L2
X :

hϑ :=

m∑

k=1

ϑkγkuk.

The property hϑ ∈ Hr
R yields the following constraint on m and (γk):

‖hϑ‖
2
r =

m∑

k=1

ν2r
k γ

2
k 6 R2.

For ℓ = 1, . . . ,m and each ϑ introduce ϑ(ℓ) by ϑ
(ℓ)
k = ϑk for k 6= ℓ and ϑ

(ℓ)
ℓ = −ϑℓ. Then

because of the Gaussianity of the Vi given Wi the log-likelihood of Pϑ(ℓ) w.r.t. Pϑ is

log
(dPϑ(ℓ)

dPϑ

)
=

n∑

i=1

±
2γℓ(Kuℓ)(Wi)

σ2(Wi)
Vi −

1

2

n∑

i=1

(2γℓ(Kuℓ)(Wi)

σ(Wi)

)2
.

Its expectation satisfies

Eϑ

[
log

(dPϑ(ℓ)

dPϑ

)]
= −2γ2

ℓn‖(Kuℓ)σ
−1‖2

W

> −2Mσ−2
0 γ2

ℓn‖[ϕ(B−2)]1/2uℓ‖
2
X

= −2Mσ−2
0 γ2

ℓnϕ(ν−2
ℓ ) =: µℓ.

In terms of the Kullback-Leibler divergence this means KL(Pϑ(ℓ) ,Pϑ) 6 −µℓ. More explicitly,

we obtain by Markov’s inequality

Pϑ

(
−

1

2

n∑

i=1

(2γℓ(Kuℓ)(Wi)

σ(Wi)

)2
6 −2µℓ

)
6

−µℓ

−2µℓ
=

1

2
.

Using the symmetry of the distribution of Vi given Wi, we infer by conditioning on (Wi)16i6n

Pϑ

(dPϑ(ℓ)

dPϑ
> exp(2µℓ)

)
= Eϑ

[
Pϑ

(
log

(dPϑ(ℓ)

dPϑ

)
> 2µℓ

∣∣∣ (Wi)16i6n

)]
>

1

2
.
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We calculate for each estimator ĥn:

sup
h∈Hr

R

Eh[‖ĥn − h‖2
X ]

> sup
ϑ∈{−1,+1}m

Eϑ[‖ĥn − hϑ‖
2
X ]

> 2−m
∑

ϑ∈{−1,+1}m

m∑

k=1

Eϑ[〈ĥn − hϑ, uk〉
2
X ]

=
m∑

k=1

2−m
∑

ϑ∈{−1,+1}m

1

2

(
Eϑ[〈ĥn − hϑ, uk〉

2
X ] + Eϑ(k) [〈ĥn − hϑ(k) , uk〉

2
X ]

)

=
m∑

k=1

2−m
∑

ϑ∈{−1,+1}m

1

2
Eϑ

[
〈ĥn − hϑ, uk〉

2
X + 〈ĥn − hϑ(k) , uk〉

2
X

dPϑ(k)

dPϑ

]

>

m∑

k=1

2−m
∑

ϑ∈{−1,+1}m

exp(2µk)

2
Eϑ

[(
〈ĥn − hϑ, uk〉

2
X + 〈ĥn − hϑ(k) , uk〉

2
X

)
×

× 1
{d P

ϑ(k)

d Pϑ
> exp(2µk)

}]

>

m∑

k=1

2−m
∑

ϑ∈{−1,+1}m

exp(2µk)

8
〈hϑ − hϑ(k) , uk〉

2
X Pϑ

(dPϑ(k)

dPϑ
> exp(2µk)

)

>

m∑

k=1

exp(2µk)

4
γ2

k .

We choose γk = σ0n
−1/2[ϕ(ν−2

k )]−1/2 such that µk = −2M and then pick the largest m > 1

such that
∑m

k=1 ν
2r
k γ

2
k 6 R2.

This gives the lower bound

inf
ĥn

sup
h∈H (r,R)

Eh[‖ĥn − h‖2
X ] > inf

ĥn

sup
h∈Hr

R

Eh[‖ĥn − h‖2
X ] >

σ2
0

4 exp(4M)n
−1

m∑

k=1

[ϕ(ν−2
k )]−1

where m is largest possible with
∑m

k=1 ν
2r
k γ

2
k 6 R2, i.e.

σ2
0n

−1
m∑

k=1

ν2r
k [ϕ(ν−2

k )]−1
6 R2.

(1) (mildly ill-posed case): When ϕ(t) = ta and νk ≍ kǫ for some a, ǫ > 0, we have asymptoti-

cally as n→ ∞:

n−1
m∑

k=1

ν2r
k [ϕ(ν−2

k )]−1 = n−1
m∑

k=1

k2ǫr+2ǫa ≍ n−1m2ǫr+2ǫa+1.

Hence, choosing m ≍ n1/(2ǫr+2ǫa+1) we obtain the asymptotic lower bound

δn ≍ n−1
m∑

k=1

[ϕ(ν−2
k )]−1 ≍ n−1m2ǫa+1 ≍ n−2r/(2r+2a+ǫ−1).
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(2) (severely ill-posed case): When ϕ(t) = exp(−t−a/2), νk ≍ kǫ for some a, ǫ > 0, we have

n−1
m∑

k=1

ν2r
k [ϕ(ν−2

k )]−1 = n−1
m∑

k=1

k2ǫr exp(kaǫ) ≍ n−1m2ǫr exp(maǫ)

means that we have to choose m = c log(n)1/aǫ with a sufficiently small c > 0. The resulting

lower bound is

δn ≍ n−1
m∑

k=1

[ϕ(ν−2
k )]−1 ≍ n−1 exp(maǫ) ≍ m−2ǫr ≍ (log n)−2r/a.

Proof of Proposition 4.3. We have

E[η̂k] = E[(Kh)(Wi)((K
∗)−1uk)(Wi)] = 〈Kh, (K∗)−1uk〉W = 〈h, uk〉X

and

Var(η̂k) =
1

n
Var

(
(Kh)(Wi)((K

∗)−1uk)(Wi) + Vi((K
∗)−1uk)(Wi)

)

6 2n−1
(
‖Kh‖2

∞ E[((K∗)−1uk)
2(Wi)] + E[V 2

i ] E[((K∗)−1uk)
2(Wi)]

)

6 2n−1(S2 + σ2
1)‖(K

∗)−1uk‖
2
W .

¿From ‖Kg‖W > c‖[ϕ(B−2)]1/2g‖X for all g ∈ L2
X we infer by duality ‖(K∗)−1g‖W 6

c−1‖[ϕ(B−2)]−1/2g‖X for all g ∈ ran(K∗). Hence,

Eh[‖ĥn − h‖2
X ] 6 2n−1(S2 + σ2

1)c
−2

m∑

k=1

[ϕ(ν−2
k )]−1 +

∞∑

k=m+1

〈h, uk〉
2
X .

¿From h ∈ H (r,R) we have the bias estimate

∞∑

k=m+1

〈h, uk〉
2
X 6 ν−2r

m+1R
2.

When choosing m as for the lower bound, then the variance term matches the lower bound

in order and the estimator ĥn attains the minimax-rate provided the bias term is not

of larger order. This is equivalent to requiring for some uniform constant c > 0 that

ν2r
m+1n

−1
∑m

k=1[ϕ(ν−2
k )]−1 > c, which in turn follows from νm+1 > νk for k 6 m and

n−1
∑m

k=1 ν
2r
k [ϕ(ν−2

k )]−1 ≍ 1.

(1) For mildly ill-posed case with ϕ(t) = ta, νk ≍ kǫ, we have

n−1
m∑

k=1

[ϕ(ν−2
k )]−1 = n−1

m∑

k=1

k2aǫ ≍ n−1m2aǫ+1 ≍ m−2rǫ
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by setting m ≍ n1/(2ǫr+2ǫa+1). Thus we obtain the upper bound: δn ≍ m−2rǫ ≍

n−2r/(2r+2a+ǫ−1).

(2) For severely ill-posed case with ϕ(t) = exp(−t−a/2), νk ≍ kǫ, we have

n−1
m∑

k=1

[ϕ(ν−2
k )]−1 = n−1

m∑

k=1

exp(kaǫ) ≍ n−1 exp(maǫ) ≍ m−2rǫ

by setting m = c log(n)1/aǫ with a sufficiently small c > 0. Thus we obtain the upper bound:

δn ≍ m−2rǫ ≍ (log n)−2r/a.

Proof of Theorem 5.3. Given Assumption 5.1 ({ψk} is a Riesz basis associated with the oper-

ator B), there is a bounded invertible operator B̄ on L2
X such that B̄ψk = uk for all k. This

implies that Hm(n) = span{u1, ..., um(n)}. Denote Πm(n)(h) as the projection of h ∈ H (r,R)

onto Hm(n). Then

‖ĥn − h‖2
X 6 2{‖Πm(n)(h) − h‖2

X + ‖ĥn − Πm(n)(h)‖
2
X}.

As in Blundell, Chen and Kristensen (2007), we define τn as a sieve measure of ill-posedness:

τn := sup
h∈Hm(n):h 6=0

‖h‖X

‖Kh‖W
= sup

h∈span{u1,...,um(n)}:h 6=0

‖h‖X

‖Kh‖W
,

which is well defined under the conditions for identification. Then

‖ĥn − Πm(n)(h)‖X 6 τn × ‖K[ĥn − Πm(n)(h)]‖W .

Under Assumption 5.2, by the definition of ĥn and applying Claims 2 and 3 in Blundell, Chen

and Kristensen (2007), we have:

‖ĥn − Πm(n)(h)‖X 6 τn × {Op(J
−rK

n +
√

(J/n) + ‖K[h− Πm(n)(h)]‖W )},

where the Op() holds uniformly over h ∈ H (r,R).

By definition of τn we have:

τ2
n 6 sup

h∈span{u1,...,um(n)}:h 6=0

‖h‖2
X

‖[ϕ(B−2)]1/2h‖2
X

6 [ϕ(ν−2
m(n))]

−1,

where the first inequality is due to Assumption 4.2 (the reverse link condition), and the second

inequality holds because νk is increasing in k and ϕ(t) is non-decreasing function in t > 0.

By definition of τn we have under Assumptions 2.1, 2.2, 4.2 and limn
Jn

m(n) = c ∈ (1,∞) and

Jn > m(n), we obtain:

τ2
n‖K[h− Πm(n)(h)]‖

2
W 6 ‖h− Πm(n)(h)‖

2
X 6 R2ν−2r

m(n)+1,
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thus

‖ĥn − h‖2
X 6 C ′ max

{
ν−2r

m(n)+1,
Jn

n
τ2
n

}
6 Cmax

{
ν−2r

m(n)+1,
m(n)

n
[ϕ(ν−2

m(n))]
−1

}

uniformly over h ∈ H (r,R) except on an event whose probability tends to zero as n ↑ ∞.
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