12 research outputs found

    Complexity of Suffix-Free Regular Languages

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.jcss.2017.05.011 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/We study various complexity properties of suffix-free regular languages. A sequence (Lk,Lk+1,…) of regular languages in some class, where n is the quotient complexity of Ln, is most complex if its languages Ln meet the complexity upper bounds for all basic measures. It is known that there exist such most complex sequences in several classes of regular languages. In contrast to this, we prove that there does not exist a most complex sequence in the class of suffix-free regular languages. However, we do exhibit two such sequences that together meet upper bounds for all basic measures.Natural Sciences and Engineering Research Council of Canada (NSERC) grant No. OGP000087National Science Centre, Poland project number 2014/15/B/ST6/0061

    Nondeterministic State Complexity for Suffix-Free Regular Languages

    Full text link
    We investigate the nondeterministic state complexity of basic operations for suffix-free regular languages. The nondeterministic state complexity of an operation is the number of states that are necessary and sufficient in the worst-case for a minimal nondeterministic finite-state automaton that accepts the language obtained from the operation. We consider basic operations (catenation, union, intersection, Kleene star, reversal and complementation) and establish matching upper and lower bounds for each operation. In the case of complementation the upper and lower bounds differ by an additive constant of two.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Syntactic Complexity of Prefix-, Suffix-, Bifix-, and Factor-Free Regular Languages

    Get PDF
    The syntactic complexity of a regular language is the cardinality of its syntactic semigroup. The syntactic complexity of a subclass of the class of regular languages is the maximal syntactic complexity of languages in that class, taken as a function of the state complexity nn of these languages. We study the syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular languages. We prove that nn−2n^{n-2} is a tight upper bound for prefix-free regular languages. We present properties of the syntactic semigroups of suffix-, bifix-, and factor-free regular languages, conjecture tight upper bounds on their size to be (n−1)n−2+(n−2)(n-1)^{n-2}+(n-2), (n−1)n−3+(n−2)n−3+(n−3)2n−3(n-1)^{n-3} + (n-2)^{n-3} + (n-3)2^{n-3}, and (n−1)n−3+(n−3)2n−3+1(n-1)^{n-3} + (n-3)2^{n-3} + 1, respectively, and exhibit languages with these syntactic complexities.Comment: 28 pages, 6 figures, 3 tables. An earlier version of this paper was presented in: M. Holzer, M. Kutrib, G. Pighizzini, eds., 13th Int. Workshop on Descriptional Complexity of Formal Systems, DCFS 2011, Vol. 6808 of LNCS, Springer, 2011, pp. 93-106. The current version contains improved bounds for suffix-free languages, new results about factor-free languages, and new results about reversa

    Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages

    Get PDF
    A language LL over an alphabet Σ\Sigma is suffix-convex if, for any words x,y,z∈Σ∗x,y,z\in\Sigma^*, whenever zz and xyzxyz are in LL, then so is yzyz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their syntactic semigroups, and the quotient complexity of their atoms.Comment: 20 pages, 11 figures, 1 table. arXiv admin note: text overlap with arXiv:1605.0669

    Asymptotic approximation for the quotient complexities of atoms

    Get PDF
    In a series of papers, Brzozowski together with Tamm, Davies, and Szykuła studied the quotient complexities of atoms of regular languages [6, 7, 3, 4]. The authors obtained precise bounds in terms of binomial sums for the most complex situations in the following five cases: (G): general, (R): right ideals, (L): left ideals, (T): two-sided ideals and (S): suffix-free languages. In each case let κc(n) be the maximal complexity of an atom of a regular language L, where L has complexity n ≥ 2 and belongs to the class C ϵ {G, R, L, T , S}. It is known that κT(n) ≤ κL(n) = κR(n) ≤ κG(n) 3 if and only if κC(n+1)/κC(n) < 3

    Syntactic Complexities of Nine Subclasses of Regular Languages

    Get PDF
    The syntactic complexity of a regular language is the cardinality of its syntactic semigroup. The syntactic complexity of a subclass of the class of regular languages is the maximal syntactic complexity of languages in that class, taken as a function of the state complexity n of these languages. We study the syntactic complexity of suffix-, bifix-, and factor-free regular languages, star-free languages including three subclasses, and R- and J-trivial regular languages. We found upper bounds on the syntactic complexities of these classes of languages. For R- and J-trivial regular languages, the upper bounds are n! and ⌊e(n-1)!⌋, respectively, and they are tight for n >= 1. Let C^n_k be the binomial coefficient ``n choose k''. For monotonic languages, the tight upper bound is C^{2n-1}_n. We also found tight upper bounds for partially monotonic and nearly monotonic languages. For the other classes of languages, we found tight upper bounds for languages with small state complexities, and we exhibited languages with maximal known syntactic complexities. We conjecture these lower bounds to be tight upper bounds for these languages. We also observed that, for some subclasses C of regular languages, the upper bound on state complexity of the reversal operation on languages in C can be met by languages in C with maximal syntactic complexity. For R- and J-trivial regular languages, we also determined tight upper bounds on the state complexity of the reversal operation

    Syntactic Complexity of Suffix-Free Languages

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.ic.2017.08.014 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/We solve an open problem concerning syntactic complexity: We prove that the cardinality of the syntactic semigroup of a suffix-free language with n left quotients (that is, with state complexity n) is at most (n−1)n−2+n−2 for n⩾6. Since this bound is known to be reachable, this settles the problem. We also reduce the alphabet of the witness languages reaching this bound to five letters instead of n+2, and show that it cannot be any smaller. Finally, we prove that the transition semigroup of a minimal deterministic automaton accepting a witness language is unique for each n.Natural Sciences and Engineering Research Council of Canada (NSERC) grant No. OGP000087National Science Centre, Poland project number 2014/15/B/ST6/0061

    Acta Cybernetica : Volume 22. Number 2.

    Get PDF
    corecore