122 research outputs found

    Quantum ground state isoperimetric inequalities for the energy spectrum of local Hamiltonians

    Get PDF
    We investigate the relationship between the energy spectrum of a local Hamiltonian and the geometric properties of its ground state. By generalizing a standard framework from the analysis of Markov chains to arbitrary (non-stoquastic) Hamiltonians we are naturally led to see that the spectral gap can always be upper bounded by an isoperimetric ratio that depends only on the ground state probability distribution and the range of the terms in the Hamiltonian, but not on any other details of the interaction couplings. This means that for a given probability distribution the inequality constrains the spectral gap of any local Hamiltonian with this distribution as its ground state probability distribution in some basis (Eldar and Harrow derived a similar result in order to characterize the output of low-depth quantum circuits). Going further, we relate the Hilbert space localization properties of the ground state to higher energy eigenvalues by showing that the presence of k strongly localized ground state modes (i.e. clusters of probability, or subsets with small expansion) in Hilbert space implies the presence of k energy eigenvalues that are close to the ground state energy. Our results suggest that quantum adiabatic optimization using local Hamiltonians will inevitably encounter small spectral gaps when attempting to prepare ground states corresponding to multi-modal probability distributions with strongly localized modes, and this problem cannot necessarily be alleviated with the inclusion of non-stoquastic couplings

    QMA-complete problems for stoquastic Hamiltonians and Markov matrices

    Get PDF
    We show that finding the lowest eigenvalue of a 3-local symmetric stochastic matrix is QMA-complete. We also show that finding the highest energy of a stoquastic Hamiltonian is QMA-complete and that adiabatic quantum computation using certain excited states of a stoquastic Hamiltonian is universal. We also show that adiabatic evolution in the ground state of a stochastic frustration free Hamiltonian is universal. Our results give a new QMA-complete problem arising in the classical setting of Markov chains, and new adiabatically universal Hamiltonians that arise in many physical systems.Comment: 11 pages. Contains several new results not present in version 1

    The computational difficulty of finding MPS ground states

    Get PDF
    We determine the computational difficulty of finding ground states of one-dimensional (1D) Hamiltonians which are known to be Matrix Product States (MPS). To this end, we construct a class of 1D frustration free Hamiltonians with unique MPS ground states and a polynomial gap above, for which finding the ground state is at least as hard as factoring. By lifting the requirement of a unique ground state, we obtain a class for which finding the ground state solves an NP-complete problem. Therefore, for these Hamiltonians it is not even possible to certify that the ground state has been found. Our results thus imply that in order to prove convergence of variational methods over MPS, as the Density Matrix Renormalization Group, one has to put more requirements than just MPS ground states and a polynomial spectral gap.Comment: 5 pages. v2: accepted version, Journal-Ref adde

    Spectral Gap Amplification

    Full text link
    A large number of problems in science can be solved by preparing a specific eigenstate of some Hamiltonian H. The generic cost of quantum algorithms for these problems is determined by the inverse spectral gap of H for that eigenstate and the cost of evolving with H for some fixed time. The goal of spectral gap amplification is to construct a Hamiltonian H' with the same eigenstate as H but a bigger spectral gap, requiring that constant-time evolutions with H' and H are implemented with nearly the same cost. We show that a quadratic spectral gap amplification is possible when H satisfies a frustration-free property and give H' for these cases. This results in quantum speedups for optimization problems. It also yields improved constructions for adiabatic simulations of quantum circuits and for the preparation of projected entangled pair states (PEPS), which play an important role in quantum many-body physics. Defining a suitable black-box model, we establish that the quadratic amplification is optimal for frustration-free Hamiltonians and that no spectral gap amplification is possible, in general, if the frustration-free property is removed. A corollary is that finding a similarity transformation between a stoquastic Hamiltonian and the corresponding stochastic matrix is hard in the black-box model, setting limits to the power of some classical methods that simulate quantum adiabatic evolutions.Comment: 14 pages. New version has an improved section on adiabatic simulations of quantum circuit
    • …
    corecore