3 research outputs found

    Relating and contrasting plain and prefix Kolmogorov complexity

    Get PDF
    In [3] a short proof is given that some strings have maximal plain Kolmogorov complexity but not maximal prefix-free complexity. The proof uses Levin's symmetry of information, Levin's formula relating plain and prefix complexity and Gacs' theorem that complexity of complexity given the string can be high. We argue that the proof technique and results mentioned above are useful to simplify existing proofs and to solve open questions. We present a short proof of Solovay's result [21] relating plain and prefix complexity: K(x)=C(x)+CC(x)+O(CCC(x))K (x) = C (x) + CC (x) + O(CCC (x)) and C(x)=K(x)KK(x)+O(KKK(x))C (x) = K (x) - KK (x) + O(KKK (x)), (here CC(x)CC(x) denotes C(C(x))C(C(x)), etc.). We show that there exist ω\omega such that lim infC(ω1ωn)C(n)\liminf C(\omega_1\dots \omega_n) - C(n) is infinite and lim infK(ω1ωn)K(n)\liminf K(\omega_1\dots \omega_n) - K(n) is finite, i.e. the infinitely often C-trivial reals are not the same as the infinitely often K-trivial reals (i.e. [1,Question 1]). Solovay showed that for infinitely many xx we have xC(x)O(1)|x| - C (x) \le O(1) and x+K(x)K(x)log(2)xO(log(3)x)|x| + K (|x|) - K (x) \ge \log^{(2)} |x| - O(\log^{(3)} |x|), (here x|x| denotes the length of xx and log(2)=loglog\log^{(2)} = \log\log, etc.). We show that this result holds for prefixes of some 2-random sequences. Finally, we generalize our proof technique and show that no monotone relation exists between expectation and probability bounded randomness deficiency (i.e. [6, Question 1]).Comment: 20 pages, 1 figur
    corecore