593,306 research outputs found

    Complexity in value-based argument systems

    Get PDF
    Abstract. We consider a number of decision problems formulated in value-based argumentation frameworks (VAFs), a development of Dung's argument systems in which arguments have associated abstract values which are considered relative to the orderings induced by the opinions of specific audiences. In the context of a single fixed audience, it is known that those decision questions which are typically computationally hard in the standard setting admit efficient solution methods in the value-based setting. In this paper we show that, in spite of this positive property, there still remain a number of natural questions that arise solely in value-based schemes for which there are unlikely to be efficient decision processes

    SwiftRange: A Short and Efficient Zero-Knowledge Range Argument For Confidential Transactions and More

    Get PDF
    Zero-knowledge range proofs play a critical role in confidential transactions (CT) on blockchain systems. They are used to prove the non-negativity of committed transaction payments without disclosing the exact values. Logarithmic-sized range proofs with transparent setups, e.g., Bulletproofs, which aim to prove a committed value lies in the range [0,2N1][0, 2^N-1] where NN is the bit length of the range, have gained growing popularity for communication-critical blockchain systems as they increase scalability by allowing a block to accommodate more transactions. In this paper, we propose SwiftRange, a new type of logarithmic-sized zero-knowledge range argument with a transparent setup in the discrete logarithm setting. Our argument can be a drop-in replacement for range proofs in blockchain-based confidential transactions. Compared with Bulletproofs, our argument has higher computational efficiency and lower round complexity while incurring comparable communication overheads for CT-friendly ranges, where N{32,64}N \in \{32,64\}. Specifically, a SwiftRange achieves 1.61×\times and 1.32×\times proving efficiency with no more than 1.1×\times communication costs for both ranges, respectively. More importantly, our argument offers a 2.3×2.3\times increase in verification efficiency. Furthermore, our argument has a smaller size when N16N \leq 16, making it competitive for many other communication-critical applications. Our argument supports the aggregation of multiple single arguments for greater efficiency in communication and verification. Finally, we benchmarked our argument against the state-of-the-art range proofs to demonstrate its practicality

    Algorithms and Complexity Results for Persuasive Argumentation

    Get PDF
    The study of arguments as abstract entities and their interaction as introduced by Dung (Artificial Intelligence 177, 1995) has become one of the most active research branches within Artificial Intelligence and Reasoning. A main issue for abstract argumentation systems is the selection of acceptable sets of arguments. Value-based argumentation, as introduced by Bench-Capon (J. Logic Comput. 13, 2003), extends Dung's framework. It takes into account the relative strength of arguments with respect to some ranking representing an audience: an argument is subjectively accepted if it is accepted with respect to some audience, it is objectively accepted if it is accepted with respect to all audiences. Deciding whether an argument is subjectively or objectively accepted, respectively, are computationally intractable problems. In fact, the problems remain intractable under structural restrictions that render the main computational problems for non-value-based argumentation systems tractable. In this paper we identify nontrivial classes of value-based argumentation systems for which the acceptance problems are polynomial-time tractable. The classes are defined by means of structural restrictions in terms of the underlying graphical structure of the value-based system. Furthermore we show that the acceptance problems are intractable for two classes of value-based systems that where conjectured to be tractable by Dunne (Artificial Intelligence 171, 2007)

    Precisely Analyzing Loss in Interface Adapter Chains

    Full text link
    Interface adaptation allows code written for one interface to be used with a software component with another interface. When multiple adapters are chained together to make certain adaptations possible, we need a way to analyze how well the adaptation is done in case there are more than one chains that can be used. We introduce an approach to precisely analyzing the loss in an interface adapter chain using a simple form of abstract interpretation.Comment: 12 pages, 1 figure. Submitted to IASTED SE 201

    Polynomial Path Orders: A Maximal Model

    Full text link
    This paper is concerned with the automated complexity analysis of term rewrite systems (TRSs for short) and the ramification of these in implicit computational complexity theory (ICC for short). We introduce a novel path order with multiset status, the polynomial path order POP*. Essentially relying on the principle of predicative recursion as proposed by Bellantoni and Cook, its distinct feature is the tight control of resources on compatible TRSs: The (innermost) runtime complexity of compatible TRSs is polynomially bounded. We have implemented the technique, as underpinned by our experimental evidence our approach to the automated runtime complexity analysis is not only feasible, but compared to existing methods incredibly fast. As an application in the context of ICC we provide an order-theoretic characterisation of the polytime computable functions. To be precise, the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*

    Polynomial Path Orders

    Full text link
    This paper is concerned with the complexity analysis of constructor term rewrite systems and its ramification in implicit computational complexity. We introduce a path order with multiset status, the polynomial path order POP*, that is applicable in two related, but distinct contexts. On the one hand POP* induces polynomial innermost runtime complexity and hence may serve as a syntactic, and fully automatable, method to analyse the innermost runtime complexity of term rewrite systems. On the other hand POP* provides an order-theoretic characterisation of the polytime computable functions: the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*.Comment: LMCS version. This article supersedes arXiv:1209.379
    corecore