7 research outputs found

    ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½Ρ‹Ρ… псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ ошибок функционирования

    Get PDF
    A parallel linear generator of multi-valued pseudorandom sequences, which operates under conditions of generating hardware errors caused by destructive adversary actions is proposed. The main types of modification of the pseudorandom sequence in case of adversary attack are considered. A distinctive feature of the iterative process of ensuring the reliability of computational operations is the "arithmetic" of computational operations by representing a system of generating recurring logical formulas as a system of many-valued logic algebra functions. The subsequent realization of multivalued logic algebra functions by means of arithmetic polynomials allowed us to parallelize the process of generating multivalued pseudorandom sequences and level out the existing complexity (specificity) of cryptographic transformations of logical data types which limit the use of redundant coding methods. As a result, a solution that allows to apply redundant modular codes to control the accuracy of the computational operations performed by the nodes of pseudorandom sequence generation is proposed. Moreover, unlike the known solutions, the proposed method provides obtaining fragments of a pseudorandom sequence on the basis of one recursive arithmetic formula with parallel calculation errors control. The use of modular forms made it possible to transfer computations from the rational numbers field arithmetic to integer arithmetic of a simple field. Among the existing variety of codes correcting errors (maximally spaced codes), a special place is occupied by multivalued Reed-Solomon codes. Reed-Solomon codes usage in the formation of pseudorandom sequences allows the formation of code-like structures that monitor and ensure the reliability of computational operations. The calculated probability of failure-free operation of the parallel linear generator of multivalued pseudorandom sequences with an error control function based on the principle of functioning β€” sliding redundancy is obtained. The achieved results can find wide application at realization of perspective high-efficiency cryptographic information protection facility.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½Ρ‹Ρ… псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Π² условиях Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½Ρ‹Ρ… ошибок, обусловлСнных дСструктивными воздСйствиями Π·Π»ΠΎΡƒΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΈΠΊΠ°. РассмотрСны основныС Π²ΠΈΠ΄Ρ‹ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ псСвдослучайной ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΡ€ΠΈ Π°Ρ‚Π°ΠΊΠ°Ρ… Π·Π»ΠΎΡƒΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΈΠΊΠ°. ΠžΡ‚Π»ΠΈΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ рассматриваСмого ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ процСсса обСспСчСния достовСрности Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ являСтся «арифмСтизация» Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ ΠΏΡƒΡ‚Π΅ΠΌ прСдставлСния систСмы ΠΏΠΎΡ€ΠΎΠΆΠ΄Π°ΡŽΡ‰ΠΈΡ… Ρ€Π΅ΠΊΡƒΡ€Ρ€Π΅Π½Ρ‚Π½Ρ‹Ρ… логичСских Ρ„ΠΎΡ€ΠΌΡƒΠ» ΠΊΠ°ΠΊ систСмы ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π°Π»Π³Π΅Π±Ρ€Ρ‹ Π»ΠΎΠ³ΠΈΠΊΠΈ. ΠŸΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ рСализация ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π°Π»Π³Π΅Π±Ρ€Ρ‹ Π»ΠΎΠ³ΠΈΠΊΠΈ посрСдством арифмСтичСских ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° Ρ€Π°ΡΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΈΡ‚ΡŒ процСсс Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½Ρ‹Ρ… псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ ΠΈ Π½ΠΈΠ²Π΅Π»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ (спСцифику) криптографичСских ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ логичСских Ρ‚ΠΈΠΏΠΎΠ² Π΄Π°Π½Π½Ρ‹Ρ…, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ кодирования. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ модулярныС ΠΊΠΎΠ΄Ρ‹ для контроля Π±Π΅Π·ΠΎΡˆΠΈΠ±ΠΎΡ‡Π½ΠΎΡΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΡ‹Ρ… Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ ΡƒΠ·Π»Π°ΠΌΠΈ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ псСвдослучайной ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. ΠŸΡ€ΠΈΡ‡Π΅ΠΌ Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ извСстных Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΡ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ обСспСчиваСт ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² псСвдослучайной ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π½Π° основании ΠΎΠ΄Π½ΠΎΠΉ рСкурсивной арифмСтичСской Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ с ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ ошибок вычислСний. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ модулярных Ρ„ΠΎΡ€ΠΌ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ пСрСнСсти вычислСния ΠΈΠ· Π°Ρ€ΠΈΡ„ΠΌΠ΅Ρ‚ΠΈΠΊΠΈ поля Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл Π² Ρ†Π΅Π»ΠΎΡ‡ΠΈΡΠ»Π΅Π½Π½ΡƒΡŽ Π°Ρ€ΠΈΡ„ΠΌΠ΅Ρ‚ΠΈΠΊΡƒ простого поля. Π‘Ρ€Π΅Π΄ΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ многообразия ΠΊΠΎΠ΄ΠΎΠ², ΠΈΡΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… ошибки (максимально разнСсСнных ΠΊΠΎΠ΄ΠΎΠ²), особоС мСсто Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½Ρ‹Π΅ ΠΊΠΎΠ΄Ρ‹ Π ΠΈΠ΄Π° β€” Π‘ΠΎΠ»ΠΎΠΌΠΎΠ½Π°. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ΄ΠΎΠ² Π ΠΈΠ΄Π° β€” Π‘ΠΎΠ»ΠΎΠΌΠΎΠ½Π° ΠΏΡ€ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ позволяСт Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ структуры, ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ ΠΈ обСспСчСниС достовСрности Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ расчСтныС Π΄Π°Π½Π½Ρ‹Π΅ вСроятности Π±Π΅Π·ΠΎΡ‚ΠΊΠ°Π·Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π° ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½Ρ‹Ρ… псСвдослучайных ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ с Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ контроля ошибок ΠΏΠΎ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡƒ функционирования β€” ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰Π΅Π΅ Ρ€Π΅Π·Π΅Ρ€Π²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅. ДостигнутыС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π½Π°ΠΉΡ‚ΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ пСрспСктивных Π²Ρ‹ΡΠΎΠΊΠΎΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… срСдств криптографичСской Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ

    A reduced set of submatrices for a faster evaluation of the MDS property of a circulant matrix with entries that are powers of two

    Get PDF
    In this paper a reduced set of submatrices for a faster evaluation of the MDS property of a circulant matrix, with entries that are powers of two, is proposed. A proposition is made that under the condition that all entries of a t Γ— t circulant matrix are powers of 2, it is sufficient to check only its 2x2 submatrices in order to evaluate the MDS property in a prime field. Although there is no theoretical proof to support this proposition at this point, the experimental results conducted on a sample of 100 thousand randomly generated matrices indicate that this proposition is true. There are benefits of the proposed MDS test on the efficiency of search methods for the generation of circulant MDS matrices, regardless of the correctness of this proposition. However, if this proposition is correct, its impact on the speed of search methods for circulant MDS matrices will be huge, which will enable generation of MDS matrices of large sizes. Also, a modified version of the make_binary_powers function is presented. Based on this modified function and the proposed MDS test, some examples of efficient 16 x 16 MDS matrices are presented. Also, an examples of efficient 24 x 24 matrices are generated, whose MDS property should be further validated

    Design of Small Rate, Close to Ideal, GLDPC-Staircase AL-FEC Codes for the Erasure Channel

    Get PDF
    International audienceThis work introduces the Generalized Low Density Parity Check (GLDPC)-Staircase codes for the erasure channel, that are constructed by extending LDPC-Staircase codes through Reed Solomon (RS) codes based on "quasi" Hankel matrices. This construction has several key benefits: in addition to the LDPC-Staircase repair symbols, it adds extra-repair symbols that can be produced on demand and in large quantities, which provides small rate capabilities. Additionally, with selecting the best internal parameters of GLDPC graph and under hy- brid Iterative/Reed-Solomon/Maximum Likelihood decoding, the GLDPC-Staircase codes feature a very small decoding overhead and a low error floor. These excellent erasure capabilities, close to that of ideal, MDS codes, are obtained both with large and very small objects, whereas, as a matter of comparison, LDPC codes are known to be asymptotically good. Therefore, these properties make GLDPC-Staircase codes an excellent AL-FEC solution for many situations that require erasure protection such as media streaming

    Communications (2012)" COMPLEXITY COMPARISON OF THE USE OF VANDERMONDE VERSUS HANKEL MATRICES TO BUILD SYSTEMATIC MDS REED-SOLOMON CODES

    Get PDF
    Reed Solomon RS(n, k) codes are Maximum Distance Separable (MDS) ideal codes that can be put into a systematic form, which makes them well suited to many situations. In this work we consider use-cases that rely on a software RS codec and for which the code is not fixed. This means that the application potentially uses a different RS(n, k) code each time, and this code needs to be built dynamically. A lightweight code creation scheme is therefore highly desirable, otherwise this stage would negatively impact the encoding and decoding times. Constructing such an RS code is equivalent to constructing its systematic generator matrix. Using the classic Vandermonde matrix approach to that purpose is feasible but adds significant complexity. In this paper we propose an alternative solution, based on Hankel matrices as the base matrix. We prove theoretically and experimentally that the code construction time and the number of operations performed to build the target RS code are largely in favor of the Hankel approach, which can be between 3.5 to 157 times faster than the Vandermonde approach, depending on the (n, k) parameters

    GLDPC-Staircase AL-FEC codes: A Fundamental study and New results

    Get PDF
    International audienceThis paper provides fundamentals in the design and analysis of Generalized Low Density Parity Check (GLDPC)-Staircase codes over the erasure channel. These codes are constructed by extending an LDPC-Staircase code (base code) using Reed Solomon (RS) codes (outer codes) in order to benefit from more powerful decoders. The GLDPC-Staircase coding scheme adds, in addition to the LDPC-Staircase repair symbols, extra-repair symbols that can be produced on demand and in large quantities, which provides small rate capabilities. Therefore, these codes are extremely flexible as they can be tuned to behave either like predefined rate LDPC-Staircase codes at one extreme, or like a single RS code at another extreme, or like small rate codes. Concerning the code design, we show that RS codes with " quasi " Hankel matrix-based construction fulfill the desired structure properties, and that a hybrid (IT/RS/ML) decoding is feasible that achieves Maximum Likelihood (ML) correction capabilities at a lower complexity. Concerning performance analysis, we detail an asymptotic analysis method based on Density evolution (DE), EXtrinsic Information Transfer (EXIT) and the area theorem. Based on several asymptotic and finite length results, after selecting the optimal internal parameters, we demonstrate that GLDPC-Staircase codes feature excellent erasure recovery capabilities, close to that of ideal codes, both with large and very small objects. From this point of view they outperform LDPC-Staircase and Raptor codes, and achieve correction capabilities close to those of RaptorQ codes. Therefore all these results make GLDPC-Staircase codes a universal Application-Layer FEC (AL-FEC) solution for many situations that require erasure protection such as media streaming or file multicast transmission
    corecore