16 research outputs found

    Repairing Inconsistent XML Write-Access Control Policies

    Full text link
    XML access control policies involving updates may contain security flaws, here called inconsistencies, in which a forbidden operation may be simulated by performing a sequence of allowed operations. This paper investigates the problem of deciding whether a policy is consistent, and if not, how its inconsistencies can be repaired. We consider policies expressed in terms of annotated DTDs defining which operations are allowed or denied for the XML trees that are instances of the DTD. We show that consistency is decidable in PTIME for such policies and that consistent partial policies can be extended to unique "least-privilege" consistent total policies. We also consider repair problems based on deleting privileges to restore consistency, show that finding minimal repairs is NP-complete, and give heuristics for finding repairs.Comment: 25 pages. To appear in Proceedings of DBPL 200

    Matching Dependencies with Arbitrary Attribute Values: Semantics, Query Answering and Integrity Constraints

    Full text link
    Matching dependencies (MDs) were introduced to specify the identification or matching of certain attribute values in pairs of database tuples when some similarity conditions are satisfied. Their enforcement can be seen as a natural generalization of entity resolution. In what we call the "pure case" of MDs, any value from the underlying data domain can be used for the value in common that does the matching. We investigate the semantics and properties of data cleaning through the enforcement of matching dependencies for the pure case. We characterize the intended clean instances and also the "clean answers" to queries as those that are invariant under the cleaning process. The complexity of computing clean instances and clean answers to queries is investigated. Tractable and intractable cases depending on the MDs and queries are identified. Finally, we establish connections with database "repairs" under integrity constraints.Comment: 13 pages, double column, 2 figure

    Consistent Query Answers in the Presence of Universal Constraints

    Get PDF
    The framework of consistent query answers and repairs has been introduced to alleviate the impact of inconsistent data on the answers to a query. A repair is a minimally different consistent instance and an answer is consistent if it is present in every repair. In this article we study the complexity of consistent query answers and repair checking in the presence of universal constraints. We propose an extended version of the conflict hypergraph which allows to capture all repairs w.r.t. a set of universal constraints. We show that repair checking is in PTIME for the class of full tuple-generating dependencies and denial constraints, and we present a polynomial repair algorithm. This algorithm is sound, i.e. always produces a repair, but also complete, i.e. every repair can be constructed. Next, we present a polynomial-time algorithm computing consistent answers to ground quantifier-free queries in the presence of denial constraints, join dependencies, and acyclic full-tuple generating dependencies. Finally, we show that extending the class of constraints leads to intractability. For arbitrary full tuple-generating dependencies consistent query answering becomes coNP-complete. For arbitrary universal constraints consistent query answering is \Pi_2^p-complete and repair checking coNP-complete.Comment: Submitted to Information System

    Complexity and Approximation of Fixing Numerical Attributes in Databases Under Integrity Constraints

    No full text
    Abstract. Consistent query answering is the problem of computing the answers from a database that are consistent with respect to certain integrity constraints that the database as a whole may fail to satisfy. Those answers are characterized as those that are invariant under minimal forms of restoring the consistency of the database. In this context, we study the problem of repairing databases by fixing integer numerical values at the attribute level with respect to denial and aggregate constraints. We introduce a quantitative definition of database fix, and investigate the complexity of several problems such as DFP, i.e. the existence of fixes within a given distance from the original instance, and CQA, i.e. deciding consistency of answers to aggregate conjunctive queries under different semantics. We provide sharp complexity bounds, identify relevant tractable cases; and introduce approximation algorithms for some of those that are intractable. More specifically, we obtain results like undecidability of existence of fixes for aggregate constraints; MAXSNPhardness of DFP, but a good approximation algorithm for a relevant special case; and intractability but good approximation for CQA for aggregate queries for one database atom denials (plus built-ins).

    Adattisztítás adatbányászati módszerekkel multidimenzionális adatbázisokban

    Get PDF
    A diplomamunkám tárgya egy olyan új módszer kifejlesztése, amelyben az adatbázis aktuális tartalmából kikövetkeztetett tudást használjuk fel hibák javítására.régi képzésProgramtervező matematiku
    corecore