7 research outputs found

    Complexity and algorithms for monomial and clausal predicate abstraction

    No full text
    In this paper, we investigate the asymptotic complexity of various predicate abstraction problems relative to the asymptotic complexity of checking an annotated program in a given assertion logic. Unlike previous approaches, we pose the predicate abstraction problem as a decision problem, instead of the traditional inference problem. For assertion logics closed under weakest (liberal) precondition and Boolean connectives, we show two restrictions of the predicate abstraction problem where the two complexities match. The restrictions correspond to the case of monomial and clausal abstraction. For these restrictions, we show a symbolic encoding that reduces the predicate abstraction problem to checking the satisfiability of a single formula whose size is polynomial in the size of the program and the set of predicates. We also provide a new iterative algorithm for solving the clausal abstraction problem that can be seen as the dual of the Houdini algorithm for solving the monomial abstraction problem

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency
    corecore