3 research outputs found

    Complexity analysis of random geometric structures made simpler

    Get PDF
    Average-case analysis of data-structures or algorithms is commonly used in compu- tational geometry when the, more classical, worst-case analysis is deemed overly pessimistic. Since these analyses are often intricate, the models of random geometric data that can be handled are often simplistic and far from "realistic inputs". We present a new simple scheme for the analy- sis of geometric structures. While this scheme only produces results up to a polylog factor, it is much simpler to apply than the classical techniques and therefore succeeds in analyzing new input distributions related to smoothed complexity analysis. Abstract: We illustrate our method on two classical structures: convex hulls and Delaunay triangulations. Specifically, we give short and elementary proofs of the classical results that n points uniformly distributed in a ball in Rd have a convex hull and a Delaunay triangulation of respective expected complexities Θ~(n^((d+1)/(d-1)) ) and Θ~(n). We then prove that if we start with n points well-spread on a sphere, e.g. an (ε,κ)-sample of that sphere, and perturb that sample by moving each point ran- domly and uniformly within distance at most δ of its initial position, then the expected complexity of the convex hull of the resulting point set is Θ~( sqrt(n)^(1−1/d) δ^(-(d-1/d)/4)). .L'analyse en moyenne de structure de données et d'algorithmes géométriques est fréquemment utilisée en géométrie algorithmique, un domaine ou' l'analyse dans le cas le pire est souvent très pessimiste. La difficulté de ce type d'analyse fait que les modèles probabilistes utilisés restent simples et relativement éloignées de données réalistes. Nous présentons une nouvelle approche pour l'analyse des structures géométriques. Nos résultats sont seulement 'a des facteurs logarithmiques près, mais notre méthode est plus simple que les classiques du domaine et nous réussissons 'a analyser de nouveau type de distribution liée à la smooth analysis. Nous illustrons notre méthode sur deux structures classiques: l'enveloppe convexe et la triangulation de Delaunay. Plus précisément, nous démontrons simplement le fait, classique, que n points uniformément distribués dans une boule de Rd ont une enveloppe convexe et une triangulation de Delaunay dont l'espérance de la taille est respectivement Θ~(n^((d+1)/(d-1)) ) et Θ~(n). Nous démontrons ensuite que si on se donne ensemble de n points bien distribu ́es sur une sphère, par exemple un (ε, κ)-échantillon de la sphère, et qu'on le perturbe ensuite en déplaçant chaque point uniformément d'une distance δ à partir de sa position initiale, alors l'espérance de la taille de l'enveloppe convexe de ces points est Θ~( sqrt(n)^(1−1/d) δ^(-(d-1/d)/4)).

    On the Combinatorial Complexity of Approximating Polytopes

    Get PDF
    Approximating convex bodies succinctly by convex polytopes is a fundamental problem in discrete geometry. A convex body KK of diameter diam(K)\mathrm{diam}(K) is given in Euclidean dd-dimensional space, where dd is a constant. Given an error parameter ε>0\varepsilon > 0, the objective is to determine a polytope of minimum combinatorial complexity whose Hausdorff distance from KK is at most εdiam(K)\varepsilon \cdot \mathrm{diam}(K). By combinatorial complexity we mean the total number of faces of all dimensions of the polytope. A well-known result by Dudley implies that O(1/ε(d1)/2)O(1/\varepsilon^{(d-1)/2}) facets suffice, and a dual result by Bronshteyn and Ivanov similarly bounds the number of vertices, but neither result bounds the total combinatorial complexity. We show that there exists an approximating polytope whose total combinatorial complexity is O~(1/ε(d1)/2)\tilde{O}(1/\varepsilon^{(d-1)/2}), where O~\tilde{O} conceals a polylogarithmic factor in 1/ε1/\varepsilon. This is a significant improvement upon the best known bound, which is roughly O(1/εd2)O(1/\varepsilon^{d-2}). Our result is based on a novel combination of both old and new ideas. First, we employ Macbeath regions, a classical structure from the theory of convexity. The construction of our approximating polytope employs a new stratified placement of these regions. Second, in order to analyze the combinatorial complexity of the approximating polytope, we present a tight analysis of a width-based variant of B\'{a}r\'{a}ny and Larman's economical cap covering. Finally, we use a deterministic adaptation of the witness-collector technique (developed recently by Devillers et al.) in the context of our stratified construction.Comment: In Proceedings of the 32nd International Symposium Computational Geometry (SoCG 2016) and accepted to SoCG 2016 special issue of Discrete and Computational Geometr
    corecore