44,027 research outputs found

    Automata Techniques for Epistemic Protocol Synthesis

    Get PDF
    International audienceIn this work we aim at applying automata techniques to problems studied in Dynamic Epistemic Logic, such as epistemic planning. To do so, we first remark that repeatedly executing ad infinitum a propositional event model from an initial epistemic model yields a relational structure that can be finitely represented with automata. This correspondence, together with recent results on uniform strategies, allows us to give an alternative decidability proof of the epistemic planning problem for propositional events, with as by-products accurate upper-bounds on its time complexity, and the possibility to synthesize a finite word automaton that describes the set of all solution plans. In fact, using automata techniques enables us to solve a much more general problem, that we introduce and call epistemic protocol synthesis

    A Gentle Introduction to Epistemic Planning: The DEL Approach

    Get PDF
    Epistemic planning can be used for decision making in multi-agent situations with distributed knowledge and capabilities. Dynamic Epistemic Logic (DEL) has been shown to provide a very natural and expressive framework for epistemic planning. In this paper, we aim to give an accessible introduction to DEL-based epistemic planning. The paper starts with the most classical framework for planning, STRIPS, and then moves towards epistemic planning in a number of smaller steps, where each step is motivated by the need to be able to model more complex planning scenarios.Comment: In Proceedings M4M9 2017, arXiv:1703.0173

    Automata Techniques for Epistemic Protocol Synthesis

    Get PDF
    In this work we aim at applying automata techniques to problems studied in Dynamic Epistemic Logic, such as epistemic planning. To do so, we first remark that repeatedly executing ad infinitum a propositional event model from an initial epistemic model yields a relational structure that can be finitely represented with automata. This correspondence, together with recent results on uniform strategies, allows us to give an alternative decidability proof of the epistemic planning problem for propositional events, with as by-products accurate upper-bounds on its time complexity, and the possibility to synthesize a finite word automaton that describes the set of all solution plans. In fact, using automata techniques enables us to solve a much more general problem, that we introduce and call epistemic protocol synthesis

    Learning Action Models: Qualitative Approach

    Get PDF
    In dynamic epistemic logic, actions are described using action models. In this paper we introduce a framework for studying learnability of action models from observations. We present first results concerning propositional action models. First we check two basic learnability criteria: finite identifiability (conclusively inferring the appropriate action model in finite time) and identifiability in the limit (inconclusive convergence to the right action model). We show that deterministic actions are finitely identifiable, while non-deterministic actions require more learning power-they are identifiable in the limit. We then move on to a particular learning method, which proceeds via restriction of a space of events within a learning-specific action model. This way of learning closely resembles the well-known update method from dynamic epistemic logic. We introduce several different learning methods suited for finite identifiability of particular types of deterministic actions.Comment: 18 pages, accepted for LORI-V: The Fifth International Conference on Logic, Rationality and Interaction, October 28-31, 2015, National Taiwan University, Taipei, Taiwa
    • …
    corecore