9 research outputs found

    Infinite Excess Entropy Processes with Countable-State Generators

    Full text link
    We present two examples of finite-alphabet, infinite excess entropy processes generated by invariant hidden Markov models (HMMs) with countable state sets. The first, simpler example is not ergodic, but the second is. It appears these are the first constructions of processes of this type. Previous examples of infinite excess entropy processes over finite alphabets admit only invariant HMM presentations with uncountable state sets.Comment: 13 pages, 3 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/ieepcsg.ht

    Structural Information in Two-Dimensional Patterns: Entropy Convergence and Excess Entropy

    Full text link
    We develop information-theoretic measures of spatial structure and pattern in more than one dimension. As is well known, the entropy density of a two-dimensional configuration can be efficiently and accurately estimated via a converging sequence of conditional entropies. We show that the manner in which these conditional entropies converge to their asymptotic value serves as a measure of global correlation and structure for spatial systems in any dimension. We compare and contrast entropy-convergence with mutual-information and structure-factor techniques for quantifying and detecting spatial structure.Comment: 11 pages, 5 figures, http://www.santafe.edu/projects/CompMech/papers/2dnnn.htm

    Thermodynamic Depth of Causal States: When Paddling around in Occam's Pool Shallowness Is a Virtue

    Get PDF
    Thermodynamic depth is an appealing but flawed structural complexity measure. It depends on a set of macroscopic states for a system, but neither its original introduction by Lloyd and Pagels nor any follow-up work has considered how to select these states. Depth, therefore, is at root arbitrary. Computational mechanics, an alternative approach to structural complexity, provides a definition for a system's minimal, necessary causal states and a procedure for finding them. We show that the rate of increase in thermodynamic depth, or {\it dive}, is the system's reverse-time Shannon entropy rate, and so depth only measures degrees of macroscopic randomness, not structure. To fix this we redefine the depth in terms of the causal state representation---ϵ\epsilon-machines---and show that this representation gives the minimum dive consistent with accurate prediction. Thus, ϵ\epsilon-machines are optimally shallow.Comment: 11 pages, 9 figures, RevTe

    Dynamical Phase Transitions in Graph Cellular Automata

    Full text link
    Discrete dynamical systems can exhibit complex behaviour from the iterative application of straightforward local rules. A famous example are cellular automata whose global dynamics are notoriously challenging to analyze. To address this, we relax the regular connectivity grid of cellular automata to a random graph, which gives the class of graph cellular automata. Using the dynamical cavity method (DCM) and its backtracking version (BDCM), we show that this relaxation allows us to derive asymptotically exact analytical results on the global dynamics of these systems on sparse random graphs. Concretely, we showcase the results on a specific subclass of graph cellular automata with ``conforming non-conformist'' update rules, which exhibit dynamics akin to opinion formation. Such rules update a node's state according to the majority within their own neighbourhood. In cases where the majority leads only by a small margin over the minority, nodes may exhibit non-conformist behaviour. Instead of following the majority, they either maintain their own state, switch it, or follow the minority. For configurations with different initial biases towards one state we identify sharp dynamical phase transitions in terms of the convergence speed and attractor types. From the perspective of opinion dynamics this answers when consensus will emerge and when two opinions coexist almost indefinitely.Comment: 15 page
    corecore