13,347 research outputs found

    Formal logic: Classical problems and proofs

    Get PDF
    Not focusing on the history of classical logic, this book provides discussions and quotes central passages on its origins and development, namely from a philosophical perspective. Not being a book in mathematical logic, it takes formal logic from an essentially mathematical perspective. Biased towards a computational approach, with SAT and VAL as its backbone, this is an introduction to logic that covers essential aspects of the three branches of logic, to wit, philosophical, mathematical, and computational

    Polylogarithmic Cuts in Models of V^0

    Full text link
    We study initial cuts of models of weak two-sorted Bounded Arithmetics with respect to the strength of their theories and show that these theories are stronger than the original one. More explicitly we will see that polylogarithmic cuts of models of V0\mathbf{V}^0 are models of VNC1\mathbf{VNC}^1 by formalizing a proof of Nepomnjascij's Theorem in such cuts. This is a strengthening of a result by Paris and Wilkie. We can then exploit our result in Proof Complexity to observe that Frege proof systems can be sub exponentially simulated by bounded depth Frege proof systems. This result has recently been obtained by Filmus, Pitassi and Santhanam in a direct proof. As an interesting observation we also obtain an average case separation of Resolution from AC0-Frege by applying a recent result with Tzameret.Comment: 16 page

    A theory and its metatheory in FS 0

    Get PDF
    Feferman has proposed FS0, a theory of finitary inductive systems, as a framework theory suitable for various purposes, including reasoning both in and about encoded theories. I look here at how practical FS0 really is. I formalise of a sequent calculus presentation of classical propositional logic in FS0 and show this can be used for work in both the theory and the metatheory. the latter is illustrated with a discussion of a proof of Gentzen's Hauptsatz

    A system of relational syllogistic incorporating full Boolean reasoning

    Full text link
    We present a system of relational syllogistic, based on classical propositional logic, having primitives of the following form: Some A are R-related to some B; Some A are R-related to all B; All A are R-related to some B; All A are R-related to all B. Such primitives formalize sentences from natural language like `All students read some textbooks'. Here A and B denote arbitrary sets (of objects), and R denotes an arbitrary binary relation between objects. The language of the logic contains only variables denoting sets, determining the class of set terms, and variables denoting binary relations between objects, determining the class of relational terms. Both classes of terms are closed under the standard Boolean operations. The set of relational terms is also closed under taking the converse of a relation. The results of the paper are the completeness theorem with respect to the intended semantics and the computational complexity of the satisfiability problem.Comment: Available at http://link.springer.com/article/10.1007/s10849-012-9165-

    Proof Complexity of Systems of (Non-Deterministic) Decision Trees and Branching Programs

    Get PDF
    This paper studies propositional proof systems in which lines are sequents of decision trees or branching programs, deterministic or non-deterministic. Decision trees (DTs) are represented by a natural term syntax, inducing the system LDT, and non-determinism is modelled by including disjunction, ?, as primitive (system LNDT). Branching programs generalise DTs to dag-like structures and are duly handled by extension variables in our setting, as is common in proof complexity (systems eLDT and eLNDT). Deterministic and non-deterministic branching programs are natural nonuniform analogues of log-space (L) and nondeterministic log-space (NL), respectively. Thus eLDT and eLNDT serve as natural systems of reasoning corresponding to L and NL, respectively. The main results of the paper are simulation and non-simulation results for tree-like and dag-like proofs in LDT, LNDT, eLDT and eLNDT. We also compare them with Frege systems, constant-depth Frege systems and extended Frege systems

    A Survey of Satisfiability Modulo Theory

    Full text link
    Satisfiability modulo theory (SMT) consists in testing the satisfiability of first-order formulas over linear integer or real arithmetic, or other theories. In this survey, we explain the combination of propositional satisfiability and decision procedures for conjunctions known as DPLL(T), and the alternative "natural domain" approaches. We also cover quantifiers, Craig interpolants, polynomial arithmetic, and how SMT solvers are used in automated software analysis.Comment: Computer Algebra in Scientific Computing, Sep 2016, Bucharest, Romania. 201

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi
    corecore