17,061 research outputs found

    Uniform synchronous criticality of diversely random complex networks

    Full text link
    We investigate collective synchronous behaviors in random complex networks of limit-cycle oscillators with the non-identical asymmetric coupling scheme, and find a uniform coupling criticality of collective synchronization which is independent of complexity of network topologies. Numerically simulations on categories of random complex networks have verified this conclusion.Comment: 8 pages, 4 figure

    Collective Relaxation Dynamics of Small-World Networks

    Get PDF
    Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization, diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the local Jacobian, graph Laplacian or a similar linear operator. The structure of networks with regular, small-world and random connectivities are reasonably well understood, but their collective dynamical properties remain largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N, average degree k and topological randomness q. We present simplified analytic predictions for the second largest and smallest eigenvalue, and numerical checks confirm our theoretical predictions for zero, small and moderate topological randomness q, including the entire small-world regime. For large q of the order of one, we apply standard random matrix theory thereby overarching the full range from regular to randomized network topologies. These results may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network dynamical systems.Comment: 12 pages, 10 figures, published in PR

    Synchronizability determined by coupling strengths and topology on Complex Networks

    Full text link
    We investigate in depth the synchronization of coupled oscillators on top of complex networks with different degrees of heterogeneity within the context of the Kuramoto model. In a previous paper [Phys. Rev. Lett. 98, 034101 (2007)], we unveiled how for fixed coupling strengths local patterns of synchronization emerge differently in homogeneous and heterogeneous complex networks. Here, we provide more evidence on this phenomenon extending the previous work to networks that interpolate between homogeneous and heterogeneous topologies. We also present new details on the path towards synchronization for the evolution of clustering in the synchronized patterns. Finally, we investigate the synchronization of networks with modular structure and conclude that, in these cases, local synchronization is first attained at the most internal level of organization of modules, progressively evolving to the outer levels as the coupling constant is increased. The present work introduces new parameters that are proved to be useful for the characterization of synchronization phenomena in complex networks.Comment: 11 pages, 10 figures and 1 table. APS forma

    Delayed Dynamical Systems: Networks, Chimeras and Reservoir Computing

    Full text link
    We present a systematic approach to reveal the correspondence between time delay dynamics and networks of coupled oscillators. After early demonstrations of the usefulness of spatio-temporal representations of time-delay system dynamics, extensive research on optoelectronic feedback loops has revealed their immense potential for realizing complex system dynamics such as chimeras in rings of coupled oscillators and applications to reservoir computing. Delayed dynamical systems have been enriched in recent years through the application of digital signal processing techniques. Very recently, we have showed that one can significantly extend the capabilities and implement networks with arbitrary topologies through the use of field programmable gate arrays (FPGAs). This architecture allows the design of appropriate filters and multiple time delays which greatly extend the possibilities for exploring synchronization patterns in arbitrary topological networks. This has enabled us to explore complex dynamics on networks with nodes that can be perfectly identical, introduce parameter heterogeneities and multiple time delays, as well as change network topologies to control the formation and evolution of patterns of synchrony
    corecore