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Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization,
diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the
local Jacobian, graph Laplacian, or a similar linear operator. The structure of networks with regular, small-world,
and random connectivities are reasonably well understood, but their collective dynamical properties remain
largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network
spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies
in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N , average degree k,
and topological randomness q. We present simplified analytic predictions for the second-largest and smallest
eigenvalue, and numerical checks confirm our theoretical predictions for zero, small, and moderate topological
randomness q, including the entire small-world regime. For large q of the order of one, we apply standard random
matrix theory, thereby overarching the full range from regular to randomized network topologies. These results
may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network
dynamical systems.
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I. INTRODUCTION

The structural features of complex networks underlie
their collective dynamics such as synchronization, diffusion,
relaxation, and coordination processes [1,2]. Such processes
occur in various fields, ranging from opinion formation in
social networks [3] and consensus dynamics of agents [4] to
synchronization in biological circuits [5,6] and oscillations
in gene regulatory networks and neural circuits [7–9]. The
asymptotic collective dynamics of all such processes is
characterized by the local Jacobian, the graph Laplacian,
or similar linear operators. In general, such linear operators
directly connect the structure of an underlying network to
its dynamics and thus its function (see, e.g., Refs. [10,11]).
Therefore, a broad area of research is related to the study of
properties of such operators, in particular to the study of their
spectra [12–19].

Small-world models based on rewiring have received
widespread attention both theoretically and in applications, as
demonstrated, for instance, by the huge number of references
pointing to the original theoretical work [20]. But for most of
their features analytical predictions are not known to date ([21];
a mean field solution of its average path length constitutes
a notable exception [22]). In particular, the spectrum of
small-world Laplacians has been studied for several specific
cases and numerically [23–27], yet a general derivation of
reliable analytic predictions was missing.

Here we present a mean field theory [28] toward closing
this gap. The article is organized as follows. In Sec. II we
first review the relations between relaxation dynamics and
the spectrum of the graph Laplacian. In Sec. III we present

rewiring “on average”, a new mean-field rewiring recently
proposed in a brief report [28]. Based on this rewiring, we
derive a single formula that approximates well the entire
spectrum from regular to strongly randomized topologies. We
then investigate the ordering of the mean-field eigenspectrum
in Sec. IV. In Sec. V we quantify the accuracy of our
predictions via systematic numerical checks for the extreme
eigenvalues. For the topological randomness q of the order of
unity, standard random matrix theory is applied in Sec. VI. We
close in Sec. VII with a summary and a discussion of further
work.

II. NETWORK RELAXATION DYNAMICS

The relaxation dynamics toward equilibrium and related
collective phenomena close to invariant sets or stationary dis-
tributions emerge across a wide variety of systems ubiquitous
in natural and artificial systems [1,29].

A. Generic linear relaxation

Mathematically, the relaxation of network dynamics to a
fixed point, a periodic orbit, or a similar stationary regime is
generically characterized by equations of the form

dxi

dt
=

N∑
j=1

Jij (xj − xi) for i ∈ {1, . . . ,N}, (1)

where xi(t) quantifies the deviation at time t from an invariant
state, N ∈ N is the size of the network, and Jij ∈ R quantifies
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the influence of unit j onto unit i. In general, xi(t) ∈ Rd , we
here take d = 1 for simplicity of presentation.

The equivalent mathematical description,

dxi

dt
=

N∑
j=1

�ijxj , (2)

for i ∈ {1, . . . ,N}, with the Laplacian

�ij =
{

Jij for i �= j

−∑N
j=1 Jij for i = j,

(3)

follows directly from the original dynamics Eq. (1).
The eigenvalues λn ∈ C and corresponding eigenvectors vn

of such a Laplacian, satisfying

�vn = λnvn, (4)

for n ∈ {1, . . . ,N}, fully characterize the asymptotic (linear
or linearized) dynamics. For instance, for stable dynamics,
where all xi(t) → 0 for t → ∞, the largest nonzero (principal)
eigenvalue λ∗ dominates the long-term dynamics: if we
have xj (0) = ∑N

n=1 anvn, the vector x(t) = [x1(t), . . . ,xN (t)]T

evolves as

x(t) = exp(�t)x(0)

= exp(�t)
∑

n

anvn

=
N∑

n=1

an exp(λnt)vn. (5)

Due to stability we have an = 0 whenever λn = 0, and for long
times this is dominated by

x(t) ∼ a∗ exp(λ∗t)v∗, (6)

where λ∗ is the principal eigenvalue.
Note that Eq. (5) also reveals how exactly all eigenvalues

contribute to relaxation (and how much relative to each other).
Additional individual eigenvalues of interest are given by the
one with smallest real part λ−, because it bounds the real parts
of the spectrum below and thereby determines the support of
the spectrum, and also because it is involved in determining
synchronizability conditions in coupled chaotic systems via
the ratio λ∗/λ−, see Ref. [30].

B. Different example systems

We briefly consider two very different paradigmatic exam-
ple classes of systems and comment on a few others whose
relaxation properties are characterized by equations of the
same type as Eq. (2).

1. Stochastic processes

First, consider random walks on a graph, or equivalently,
Markov chains defined by a weighted nonnegative graph
whose nodes represent the N states [31]. For such processes,
the dynamics of the probability pi(t) to reside in state

i ∈ {1, . . . ,N} at time t is given by

dpi

dt
=

N∑
j=1

[Tijpj − Tjipi] for i ∈ {1, . . . ,N}, (7)

where Tij defines the transition rate (probability per unit time)
of the system-switching state from j to i given it resides in
i. We assume the process to be ergodic. Identifying p∗ to
be the unique stationary distribution �ij = Tij for i �= j and
�ii = −∑

j Tji and setting xi(t) ≡ pi(t) − p∗
i exactly maps

this process onto the generic form of Eq. (2) with xi(t) → 0
as t → ∞ for all i ∈ {1, . . . ,N}.

2. Coupled deterministic oscillators

Second, consider the relaxation dynamics of weakly cou-
pled limit cycle oscillators, generically modeled as phase-
coupled oscillators

dθi

dt
= ωi +

∑
j

hij (θj − θi) for i ∈ {1, . . . ,N}, (8)

where θi(t) is the phase of unit i at time t , ωi is the
local intrinsic frequency of oscillator i, and hij (.) defines
a smooth coupling function from unit j to i [9,32,33].
Phase-locking, where θj (t) − θi(t) = �ji is constant in time,
constitutes a generic collective state of such systems, see, e.g.,
Refs. [34–36]. A paradigmatic model is given by networks of
Kuramoto oscillators coupled by simple sinusoidal functions,
i.e., hij (θ ) = sin(θ ) [32,33,37].

In the most general setting, a matrix J is defined by elements
Jij = ∂hij (θ )/∂θ |θ=�ji

that encode the network structure close
to the phase-locked state. Under certain conditions on the ωi

and the hij , the system’s dynamics exhibits a short transient
dominated by nonlinear effects and thereafter exponentially
relaxes to the phase-locked state. Linearizing close to such a
state yields phase perturbations defined as

δi(t) := θi(t) − θ (t), (9)

which evolve according to

dδi

dt
=
∑

j

�ij δj (t) for i ∈ {1, . . . ,N}, (10)

with the graph Laplacian given by Eq. (3).
In a simple setting, we have Jij = 1 for an existing edge

and Jij = 0 for no edge such that the local linear operator
in Eq. (10) coincides with the graph Laplacian defined by its
elements,

�ij = Jij (1 − δij ) − kiδij , (11)

for i,j ∈ {1, . . . ,N}, where now Jij are the elements of the
adjacency matrix, ki is the degree of node i (replaced by the
in-degree for directed networks), and δij is the Kronecker-δ.
The asymptotic relaxation dynamics on such networks is
thus characterized by this graph Laplacian �. Similarly,
any dynamics near genuine fixed points, for instance in
gene regulatory networks [38,39], is equally characterized by
linearized dynamics stemming from local Jacobians.
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3. Power grids, social networks, neural circuits,...

Several other systems exhibit qualitatively the same dynam-
ical relaxation. In fact, power grids are often characterized by
second-order oscillatory systems [40] that principally relax to
periodic phase-locked solutions (stationary operating states
of the grid) very similarly to the phase oscillator systems
discussed above [41]. In models of several social phenomena,
e.g., of opinion formation of agents, the dynamics of consensus
formation is equally akin to such locking dynamics, where the
locked state would now be a homogeneous, fully synchronous
one [42]. Last but not least, perturbations of the spatiotemporal
collective dynamics of pulse-coupled systems such as neural
circuits [43,44] also relax according to Eq. (2).

III. MEAN FIELD REWIRING AND SPECTRUM

Diving into explaining the small-world model, we analyze
and derive its approximate Laplacian based on a two-stage
mean-field rewiring. We follow Ref. [28] and where appropri-
ate take parts of the description presented there.

We consider an initial ring graph of N nodes. Each node
receives k (being even) links from its k/2 nearest neighbors
on both sides. Then we introduce randomness in the network
topology by rewiring.

To define Watts-Strogatz randomized networks, single
instances of an ensemble of stochastically rewired networks
are generated (Fig. 1, left panel). Following Ref. [20] for
undirected networks, we first cut each edge with probability
q. Afterwards the cut edges are rewired to nodes chosen

FIG. 1. (Color online) Rewiring—stochastic and mean field.
Cartoon for N = 10 and k = 4. Instead of taking out (step 1) and
putting back (step 2) edges randomly (left column), the corresponding
weight is subtracted (step 1) uniformly and added (step 2) in two
fractions (right column).

uniformly at random from the whole network. Similarly, for
directed [45] networks, we first cut all outgoing edges with
probability q and rewire their tips afterwards. In both cases we
avoid double edges and self-loops.

To analytically determine the Laplacian mean-field spec-
trum in dependence of the network size N , the average degree
k and the topological randomness q, we introduce a two-stage
mean-field rewiring that effectively generates, at given q,
the average network from the ensemble of all stochastically
rewired networks. This is depicted in Fig. 1 (right panel) in
comparison to both other rewiring procedures for undirected
and directed networks. First, we define a circulant mean-field
Laplacian

�̃mf =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 c2 · · · cN−1

cN−1 c0 c1 c2
...

cN−1 c0 c1
. . .

...
. . .

. . .
. . . c2

c1

c1 · · · cN−1 c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

Its matrix elements for the initial configuration (Fig. 1, q = 0,
top) are given by

ci =
⎧⎨
⎩

−k if i = 0
1 if i ∈ {1, . . . , k

2 ,N − k
2 , . . . ,N − 1} = S1

0 if i ∈ { k
2 + 1, . . . ,N − k

2 − 1} = S2,

(13)

where S1 represents the set of edges being present in the ring
and S2 those absent ones outside that ring.

Instead of rewiring single edges randomly (Fig. 1, left
panel), we now distribute the corresponding weight of rewired
edges uniformly among the whole network (Fig. 1, right
panel). Thus, for a given rewiring probability q we generate
a mean-field version of the randomized network ensemble in
the following two steps:

First, we subtract the average total weight qkN/2 of all
edges to be rewired (S1), i.e., ci = 1 − q if i ∈ S1.

Second, the rewired weight is distributed uniformly among
the total “available” weight in the whole network given by

f = N (N − 1) − (1 − q)kN

2
. (14)

With the weights

f1 = qkN

2
(15)

being available in S1 and

f2 = N (N − 1) − kN

2
(16)

in S2, we assign the fraction f1/f to elements representing
edges in S1 and f2/f to those representing S2. Therefore, an
individual edge in S1 gets the additional weight

w1 = f1

f

qkN

2
kN
2

= q2k

N − 1 − (1 − q)k
, (17)
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FIG. 2. (Color online) The banded structure of the mean-field
graph Laplacian �̃mf given in Eqs. (12) and (19). It has the weights
w̄1 = 1 − q + w1 for ci |i ∈ S1 and w2 for ci |i ∈ S2 [see Eq. (13) for
the definition of Si]. For q = 0, and hence w̄1 = 1 and w2 = 0, we
recover the exact ring Laplacian.

and an edge in S2 gets the new weight

w2 = f2

f

qkN

2
N(N−1)−kN

2

= qk

N − 1 − (1 − q)k
. (18)

Thus, as depicted in Fig. 2, in our mean-field theory the
elements of the Laplacian �̃mf Eq. (12) of a network on N

nodes with degree k after rewiring with probability q are given
by

ci =
⎧⎨
⎩

−k if i = 0
1 − q + w1 if i ∈ S1

w2 if i ∈ S2.

(19)

The mean-field Laplacian defined by Eqs. (12) and (19) by
construction is a circulant matrix with eigenvalues [46–48]

λ̃mf
l =

N−1∑
j=0

cj exp

[−2πi(l − 1)j

N

]
. (20)

Observing the structure in Fig. 2 we immediately obtain the
trivial eigenvalue for l = 1:

λ̃mf
1 =

N−1∑
j=0

cj = −k + k(1 − q + w1) + (N − k − 1)w2 = 0,

(21)

which is common to all networks (for all q, N , and any
k � N − 1) and reflects the invariance of Laplacian dynamics
against uniform shifts, as seen from the associated eigenvector
ṽ1 = (1, . . . ,1)T.

To obtain the remaining eigenvalues for l ∈ {2, . . . ,N}, we
first define

xl := exp

[−2πi(l − 1)

N

]
, (22)

c′ := 1 − q

k
+ qc′′, (23)

and

c′′ := q

N − 1 − (1 − q)k
. (24)

This leads to

λ̃mf
l = −k + kc′

k
2∑

j=1

x
j

l + kc′′
N−1− k

2∑
j= k

2 +1

x
j

l + kc′
N−1∑

j=N− k
2

x
j

l

(25)

= −k + kc′
k
2∑

j=1

x
j

l + kc′
k
2∑

j=1

x
N−j

l

+ kc′′

⎛
⎝ N−k

2 −1∑
j=1

x
N
2 +j

l +
N−k

2 −1∑
j=1

x
N
2 −j

l + x
N
2

l

⎞
⎠ , (26)

where we have exploited the additional transposition sym-
metry �̃mf = (�̃mf)T, which implies cj = cN−j . Applying
the Euler formula exp (iα) = cos(α) + i sin(α), the complex
summands cancel and we get

λ̃mf
l = −k + 2kc′

k
2∑

j=1

cos

[
2π (l − 1)j

N

]

+ x
N
2

l kc′′

⎧⎨
⎩2

N−k
2 −1∑
j=1

cos

[
2π (l − 1)j

N

]
+ 1

⎫⎬
⎭ . (27)

Using the identity
n∑

j=0

cos(jα) = cos

(
n + 1

2
α

)
sin

(nα

2

) 1

sin
(

α
2

) + 1

= 1

2

{
1 + sin

[(
n + 1

2

)
α
]

sin
(

α
2

)
}

, (28)

we obtain

λ̃mf
l = −k + kc′

{
sin

[ (k+1)(l−1)π
N

]
sin

[ (l−1)π
N

] − 1

}

+ x
N
2

l kc′′ sin
[ (N−k−1)(l−1)π

N

]
sin

[ (l−1)π
N

] . (29)

Taking advantage of additional identities, only valid for
l ∈ Z (Fig. 3),

x
N/2
l = (−1)l−1, (30)

(−1)l−1 sin(α) = sin[α + (l − 1)π ], (31)

and the symmetry sin(−α) = − sin(α), the expression simpli-
fies to

λ̃mf
l = −k + kc′

{
sin

[ (k+1)(l−1)π
N

]
sin

[ (l−1)π
N

] − 1

}

+ (−1)l−1kc′′ sin
{ [−(k+1)+N](l−1)π

N

}
sin

[ (l−1)π
N

]
052815-4
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(29)
(33)

FIG. 3. (Color online) Interpolating the eigenvalues. Equa-
tions (29) (blue) and (33) (red) both contain the eigenspectrum λ̃mf

l

for l ∈ {2, . . . ,N} correctly (green circles). While λ̃mf
l in Eq. (29)

includes λ̃mf
1 as liml→1 λ̃mf

l = λ̃mf
1 = 0 as well, λ̃mf

l for l ∈ {2, . . . ,N}
in Eq. (33) does not: To further simplify expressions, we have used
Eqs. (30) and (31) only valid for integer l, but apparently not for
l = 0.

= −k + kc′
{

sin
[ (k+1)(l−1)π

N

]
sin

[ (l−1)π
N

] − 1

}

+ kc′′ sin
{ [−(k+1)(l−1)+2N(l−1)]π

N

}
sin

[ (l−1)π
N

]
= −k + kc′

{
sin

[ (k+1)(l−1)π
N

]
sin

[ (l−1)π
N

] − 1

}

− kc′′ sin
[ (k+1)(l−1)π

N

]
sin

[ (l−1)π
N

] , (32)

which finally leads to

λ̃mf
l = −k − kc′ + k(c′ − c′′)

sin
[ (k+1)(l−1)π

N

]
sin

[ (l−1)π
N

] , (33)

for l ∈ {2, . . . ,N}.

IV. THE ORDERING OF THE MEAN-FIELD SPECTRUM

The spectrum obeys the symmetry

λ̃mf
l = λ̃mf

N−l+2, (34)

but is unordered otherwise; i.e., the index l does neither denote
eigenvalues with decreasing real part nor eigenvalues with
decreasing absolute value.

As we argue below the expression λ̃mf
2 [which equals

λ̃mf
N due to Eq. (34)] always constitutes the second-largest

(principal) eigenvalue λ̃mf
∗ . The only term depending on l in

Eq. (33) is the ratio

sin
[ (k+1)(l−1)π

N

]
sin

[ (l−1)π
N

] . (35)

We therefore study the function

f (x) = sin[(k + 1)x]

sin x
, (36)

FIG. 4. (Color online) λ̃mf
2 always constitutes the second largest

eigenvalue. Functions f (x) [Eq. (36)], the oscillating function
sin[(k + 1)x], and the envelope function 1/ sin(x) are plotted vs. x =
(l−1)π

N
∈ (0,π ) for k = 10. Obviously, a larger k leads to more roots

of f (x), but otherwise the functions show the same characteristics
for all k � N − 1: f (x) has a local maximum at x = 0 and decreases
strictly monotonically up to the following minimum. For larger x

the envelope function guarantees that all values up to x = π/2 are
smaller than f (xl=2 = π

N
).

with

x = (l − 1)π

N
(37)

and x ∈ (0,π/2). Due to the symmetry, Eq. (34), the interval
(0,π/2) covers the entire spectrum, Eq. (33).

The function f (x) on x ∈ (0,π/2) is the product of the
oscillating function sin[(k + 1)x] and a strictly monotonically
decreasing function 1/ sin(x). Therefore, it is a damped
oscillation with period of 2π/(k + 1) and with the amplitude
decreasing as 1/ sin(x) (Fig. 4).

At x = 0 we apply the Theorem of l’Hospital to calculate
the following limits. There is a removable singularity,

lim
x→0

f (x) = k + 1, (38)

with

lim
x→0

f ′(x) = 0 and lim
x→0

f ′′(x) = − 1
3k(k2 + 3k + 2) < 0,

(39)

i.e., a local maximum.
In order to show that the index l = 2 is always associated

with the second-largest eigenvalue, we first determine its x

value. It is given by

xl=2 = π

N
. (40)

Since the roots of the function f (x) are located at

xroot,r = rπ

k + 1
, (41)

for r ∈ Z. Thus, xl=2 is always smaller than the first root xroot,1,
Eq. (41), of the function f (x) (Fig. 5).

The boundary points of function f (x) and the envelope
function 1/ sin(x) are given by

xb,r = 4πr + π

2(k + 1)
, (42)

for r ∈ Z.
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FIG. 5. (Color online) Important points of the function f (x). The
function f (x) is plotted for k = 100. The boundary points [green,
Eq. (42)] of the function f (x) and the envelope function 1/ sin(x),
roots of f (x) [purple, Eq. (41)], and the x value xl=2 [blue, Eq. (40),
N = 1000] corresponding to the eigenvalue λ̃mf

2 are highlighted.

The function f (x) is bounded from above by the envelope
function 1/ sin(x) for all x > xb,0, with

xb,0 = π

2(k + 1)
(43)

being the first boundary point of function f (x) and its envelope
function [r = 0 in Eq. (42)] (Fig. 5).

The first derivative of f (x) stays negative at least up to the
first root [r = 1 in Eq. (41)] at

xroot,1 = π

k + 1
> xb,0, (44)

which is always larger than the first boundary point xb,0,
Eq. (43).

To summarize, the function f (x) has a local maximum
at x = 0 and is then strictly monotonically decreasing up to
xb,0, Eq. (43). Then, for all x > xb,0 the function f (x) takes
values smaller than or at most equal to the values of the
envelope function 1/ sin(x), which is strictly monotonically
decreasing in the considered domain (see Figs. 4 and 5).
Thus, if xl=2, Eq. (40), is smaller than the first boundary
point xb,0, Eq. (43), the eigenvalue λ2 constitutes indeed the
second-largest eigenvalue.

Comparing Eqs. (40) and (43), this is the case for N �
2(k + 1), i.e., for k < N/2. Numerical investigations suggest
that the eigenvalue λ2 always constitutes the second-largest
eigenvalue independent from the chosen values for the param-
eters N , k, and q. However, monotonicity considerations are
not that evident for k > N/2.

The other extremal eigenvalue λ̃mf
- cannot be that easily

assigned to a fixed index. However, arguing similarly as for the
second-largest eigenvalues, it is possible to find good estimates
for the index at which the smallest eigenvalue,

λ̃mf
- = min

l
λ̃mf

l , (45)

always occurs.

The global minimum of f (x) is always located between its
first two roots xroot,1 and xroot,2 in Eq. (42); i.e.,

xroot,1 = π

k + 1
< x− <

2π

k + 1
= xroot,2. (46)

It thus follows for the index l− of the smallest eigenvalue:

N

k + 1
< l− − 1 <

2N

k + 1
. (47)

Therefore, a good estimate for the smallest eigenvalue is given
by

λ̃mf
− ≈ λ̃mf

� 3N
2(k+1) +1�, (48)

where �x� denotes the nearest integer to x.

V. EXTREME EIGENVALUES

As the offset of each eigenvalue, Eq. (33), equals k, we
consider the scaled eigenvalues

λmf
l (N,k,q) = λ̃mf

l (N,k,q)

k
(49)

in the following to allow for a consistent analysis for different
k. Additionally, we always plot the real part of the eigenvalues
in the case of directed networks, whereas we plot λl ∈ R in
the case of undirected networks.

As stated in the introduction, the principal eigenvalue λ∗
(that equals λ2 as shown above) is of special importance since
it dominates the long time dynamics (see, e.g., Ref. [49]).

For l = 2, Eq. (33) simplifies to

λmf
2 (N,k,q) = −1 + c′

{
sin

[ (k+1)π
N

]
sin

(
π
N

) − 1

}

+ c′′
{

sin
[ (k+1)π

N

]
sin

(
π
N

)
}

. (50)

In Fig. 6 we compare the typical eigenvalues obtained
by numerical diagonalization with our analytic prediction

FIG. 6. (Color online) Second-largest eigenvalues from regular
to randomized networks. Numerical measurements for undirected
(×) and directed (©) networks in comparison with the analytical
mean-field predictions [Eq. (50), solid lines] as a function of q, for
different degrees k. The error bars on the numerical measurements
are smaller than the data points (N = 1000, each data point averaged
over 100 realizations). Adapted from Ref. [28].
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FIG. 7. (Color online) Scaling of the real part of the second-
largest eigenvalue for fixed network size. Numerical measurements
for undirected (×) and directed (©) networks in comparison with the
analytical mean-field predictions [Eq. (50), solid lines]. The analytical
approximations obtained from the expansions in Eq. (51) are depicted
by the dashed lines. The error bars on the numerical measurements
are smaller than the data points, N fixed to 1000.

Eq. (50). The analytic prediction is accurate for both
undirected and directed networks, and for all but very
small relative degrees k/N < 0.05. Moreover, the prediction
Eq. (50) approximates well the actual dependence of λ2

for all but very large q, thus including regular-ring, small-
world, and even more substantially randomized network
topologies.

Next we further investigate the scaling behavior of Eq. (50)
in dependence on the system’s parameters.

A. Approximation for small degrees

Expanding Eq. (50) up to O(N−2) as N → ∞ yields

λmf
2 (N,k,q) � −q − [1 + k(1 − q)]q

N

− (k + 1)(k + 2)π2(1 − q) + 6q(k + 1 − kq)2

6N2
.

(51)

For q = 0 we recover the known approximation for sym-
metric regular-ring networks:

λmf
2 (N,k,0) � − (k + 1)(k + 2) π2

6N2
. (52)

The approximation Eq. (51) agrees well with Eq. (50) up to
values of k < N/2, but still is a good guide for even larger
degrees k, cf. Fig. 7.

B. Scaling with network size

In order to study the dependence on the network size we
fix the edge density d = k/N > 0 for large N � 1, which
ensures that the network will remain connected. This leads to
the expression

λmf
2 (d,q) � −1 + (1 − d)(1 − q)

[1 − d(1 − q)]dπ
sin(dπ ) (53)

in the limit N → ∞.

FIG. 8. (Color online) Second-largest eigenvalues in dependence
on edge density and network size. (a) Numerical measurements for
directed (©) and undirected (×) networks (error bars smaller than the
data points) in comparison with the analytic mean field prediction (53)
for N = 2000. (b) Asymptotic (N → ∞) real parts of the second-
largest eigenvalues λ2 in dependence on the network size N for fixed-
edge density d = k/N = 0.1 [q values and symbols as in panel (a)].
(c) Asymptotic (N → ∞) real parts of the second-largest eigenvalues
λ2 in dependence on the network size N for fixed-edge density d =
k/N = 0.5 [q values and symbols as in (a)]. Panels (a) and (b) are
adapted from Ref. [28].

Figure 8 confirms the validity of our approximation
Eq. (53): the second-largest eigenvalues λ2, for both undirected
and directed networks, in dependence on the edge density
d for networks of size above about N = 500 nodes are
predicted well again. Edge densities other than those displayed
[d = k/N = 0.1 and d = 0.5, Figs. 8(b) and 8(c)] qualitatively
yield the same asymptotic behavior.
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FIG. 9. (Color online) Smallest eigenvalues from regular to ran-
domized networks. Numerical measurements for undirected (×) and
directed (©) networks in comparison with the analytical mean-field
predictions [Eq. (45), solid lines] as a function of q, for different
degrees k. Dashed lines show the analytic estimations of the smallest
eigenvalues [Eq. (48)]. The error bars on the numerical measurements
are smaller than the data points (N = 1000, each data point averaged
over 100 realizations).

C. The smallest eigenvalue

The smallest eigenvalue λ− defined in Eq. (45) is
also an important indicator for synchronization proper-
ties, in particular—in combination with the second-largest
eigenvalue—for the synchronizability (see, e.g., Ref. [25]).
For directed networks this refers to the eigenvalue with the
smallest real part.

Here, the analytic prediction Eq. (33) again fits well with
the actual eigenvalues obtained by numerical diagonalization,
cf. Fig. 9. Note also that our estimation Eq. (48) for the smallest
eigenvalue agrees well with the actual analytic prediction
Eq. (45). It turns out that the analytic prediction is accurate
for both undirected and directed networks. The prediction
Eq. (50) approximates well the actual dependence of λ− for
small q, thus including regular rings and small worlds. The
prediction is still a good guide for the general dependence of
the second-largest eigenvalue on q, but shows some deviation
from the numerical results for larger q, i.e., for substantially
randomized network topologies.

VI. ANALYTICAL PREDICTIONS FOR RANDOM
TOPOLOGIES ANALYTICAL PREDICTIONS VIA

RANDOM MATRIX THEORY

To analytically predict the second largest eigenvalues for the
graph Laplacians of undirected and directed networks close
to q = 1 [see the shaded area (bottom, right) in Fig. 6] we
consult random matrix theory [50] (cf. also Refs. [51–54]).
For a review of synchronization in networks with random
interactions, see, e.g., Ref. [55].

First, we consider undirected networks associated with
symmetric matrices. Here, every connection between a pair
of nodes i and j �= i is present with a given probability P .

Second, we consider directed networks associated with
asymmetric matrices. Here, all nodes have the same in-degree
kin
i = kin. Each of the kin nodes that is connected to node i

is independently drawn from the set of all other nodes in the
network with uniform probability.

Given a sufficiently large network size N and a sufficiently
large k (respectively, a sufficiently large kin), we numerically
find that the set of nontrivial eigenvalues resemble disks of
radii r ′ for undirected networks and r for directed networks
(cf. also Refs. [43,44]).

For directed networks where the in-degree kin
i = k for all

nodes i stays fixed during the whole rewiring procedure, i.e., all
diagonal elements are constant, the graph Laplacian is obtained
by shifting all eigenvalues of the adjacency matrix by −k. For
undirected networks there are small deviations from node to
node but the average degree equals k. However, numerical
simulations confirm that shifting here again the eigenvalues of
the symmetric adjacency matrix by the negative average degree
−k is feasible. Thus, we consider the adjacency matrices in
the following, Asym for undirected and Aasym for directed
networks, and later shift them by −k.

A. Ensembles of symmetric and asymmetric random matrices

First, consider N × N symmetric matrices A = AT with
real elements Aij . We constrain the diagonal entries to vanish
Aii = 0 and denote its N eigenvalues by λk . The elements
Aij (i < j ) are independent, identically distributed random
variables according to a probability distribution ρ(Aij ). Ac-
cording to Refs. [56–58], there is only one known ensemble
with independent identically distributed matrix elements that
differs from the Gaussian one. Thus, there are exactly two
universality classes, i.e., classes that do not depend on the
probability distribution ρ(Aij ) but are determined by matrix
symmetry only. Every ensemble of matrices within one of
these universality classes exhibits the same distribution of
eigenvalues in the limit of large matrices, N → ∞, but the
eigenvalue distributions are in general different for the two
classes.

The arithmetic mean of the eigenvalues is zero,

[λi]i := 1

N

N∑
i=1

λi = 1

N

N∑
i=1

Aii = 0, (54)

and the ensemble variance of the matrix elements scales like

σ 2 = 〈
A2

ij

〉 = r2

N
, (55)

for N � 1 and r > 0 being the radii of disks that enclose the
set of nontrivial eigenvalues for directed networks [43,44].

For the Gaussian symmetric ensemble, it is known [50,52]
that the distribution of eigenvalues ρ

sym
Gauss(λ) in the limit N →

∞ is given by Wigner’s semicircle law:

ρ
sym
Gauss(λ) =

{
1

2πr2

√
4r2 − λ2 if |λ| � 2r

0 otherwise.
(56)

The ensemble of sparse matrices [56,57,59–62] exhibits a
different eigenvalue distribution ρ

sym
sparse(λ) that depends on the

finite number k of nonzero entries per row and approaches the
distribution ρ

sym
Gauss(λ) in the limit of large k, such that

lim
k→∞

ρsym
sparse(λ) = ρ

sym
Gauss(λ). (57)
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It is important to note that in the limit of large N the
eigenvalue distributions ρ

sym
sparse and ρ

sym
Gauss depend only on the

one parameter r , which is derived from the variance of the
matrix elements Eq. (55).

For real, asymmetric matrices (independent Aij and Aji),
there are no analytical results for the case of sparse matrices
but only for the case of Gaussian random matrices. The
Gaussian asymmetric ensemble yields the distribution of
complex eigenvalues in a disk in the complex plane [63,64]

ρ
asym
Gauss(λ) =

{ 1
πr2 if |λ| � r

0 otherwise,
(58)

where r from Eq. (55) is the radius of the disk that is centered
around the origin. Like in the case of symmetric matrices, this
distribution also depends only on one parameter r , which is
derived from the variance of the matrix elements.

B. Undirected random networks

The real symmetric adjacency matrix Asym is an N × N

matrix that satisfies A
sym
ij = A

sym
ji and A

sym
ii = 0.

Furthermore, the matrix elements of Asym are independent
up to the symmetry constraint A

sym
ij = A

sym
ji . They are equal to

1 with probability

P = 〈ki〉
N − 1

≈ k

N
, (59)

and equal to 0 with probability 1 − P .
Thus, the variance σ 2 is given by

σ 2 = P (1 − P ) = k

N

(
1 − k

N

)
. (60)

Therefore, the eigenvalues are located in a disk of radius

r ′ = 2r, (61)

with

r = σ
√

N =
√

k − k2

N
(62)

centered around the origin.

C. Directed random networks

The real asymmetric adjacency matrix Aasym has exactly k

elements equal to one per row. Therefore, its elements have a
spatial average

[
A

asym
ij

]
:= 1

N

N∑
j=1

A
asym
ij = k

N
(63)

and a second moment

[
(Aasym

ij )2
] = 1

N

N∑
j=1

(Aasym
ij )

2 = k

N
. (64)

Thus, the variance

σ 2 = [
(Aasym

ij )
2]− [

A
asym
ij

]2 = k

N
− k2

N2
. (65)

If we assume that the eigenvalue distribution for directed
networks with fixed in-degree is similar to those for random

matrices [43,44], we obtain a prediction from Eq. (55), which
yields

r = σ
√

N =
√

k − k2

N
(66)

for the radius of the disk of eigenvalues centered around the
origin.

D. Predictions for the scaled graph Laplacians

To obtain predictions for the eigenvalues of the appropriate
graph Laplacian, we have to consider the shift by −k

(discussed in the beginning of this section) and the scaling
factor 1/k introduced in Eq. (49).

Together with Eq. (62), the second-largest eigenvalues for
undirected networks close to q = 1 [Fig. 10, (a)] are well
predicted by Wigner’s semicircle law (wsc):

λwsc
2 (N,k,1) = 1

k

(
2

√
k − k2

N
− k

)

= 2

√
1

k
− 1

N
− 1. (67)

The real parts of the eigenvalues for directed networks close
to q = 1 [Fig. 10(b)] with Eq. (66) are with the theory of

FIG. 10. (Color online) Analytic prediction of the second-largest
eigenvalues close to q = 1. (a) Numerical measurements for undi-
rected (×) networks in comparison with the analytical predictions
λwsc

2 via Wigner’s semicircle law [Eq. (67), solid lines], for different
degrees k. (b) Numerical measurements for directed (©) networks
in comparison with the analytical predictions λrmt

2 from the theory
of asymmetric random matrices [Eq. (68), solid lines]. The error
bars on the numerical measurements are smaller than the data points
(N = 1000, each data point averaged over 100 realizations). Dashed
lines are only a guide to the eye. Taken from Ref. [28].
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asymmetric random matrices (rmt),

λrmt
2 (N,k,1) = 1

k

(√
k − k2

N
− k

)

=
√

1

k
− 1

N
− 1. (68)

Note that λwsc
2 (N,k,1) in Eq. (67) acquires a positive value

for too small k values and a sufficiently large network size
N (cf. [65]). However, for the k values we investigated
[Figs. 10(a) and 10(b)], the second-largest eigenvalues are
well predicted by both Eqs. (67) and (68).

VII. SUMMARY AND DISCUSSION

In this article we have presented and explicated derivations
and extended a simple mean-field rewiring scheme suggested
recently [28] to derive analytical predictions for the spectra of
graph Laplacians. The key is replacing a stochastic realization
of a rewired network at given topological randomness by its
ensemble-averaged network. We achieve this averaging via a
two-stage approach that distinguishes the original outer-ring
structure and the originally “empty” inner part of a network
and rewiring probabilities separately. For all q, the resulting
average network in particular shares exactly the same (average)
fraction of links in the original regular part of the network as
well as in its originally “empty” part. We derive expressions
for the largest nontrivial and the smallest eigenvalues, the full
spectrum, as well as several scaling behaviors.

We remark that on theoretical grounds, the eigenvalue
spectrum of the resulting average network in general is
not equal to the average of the spectra of the individual
stochastic network realizations. Yet, systematic numerical
checks confirm that the mean-field approximation introduced
is accurate as long as q is sufficiently below one. In the limit
q → 1, we derive the eigenvalue spectra based on random
matrix theory, which become exact in the limit of infinitely
large networks, N → ∞.

Although the mean-field rewiring is undirected, eigenvalues
for directed networks are approximated more accurately and
in a wider range of q values, which is in particular related to
the fact that the predictions for the undirected second-largest
eigenvalues at q = 1 are larger in real part than the directed
ones, while all the mean-field eigenvalues converge to −1
at q = 1. For “small” k values the mean-field approximation
becomes less accurate, which may be due to the fact that
the ring structure is destroyed more easily while rewiring.
Additionally, the bulk spectra spread much more drastically
with q than for larger k values.

Furthermore, note that the analysis of the mean-field
spectrum presented here can principally not be extended
to the Laplacian eigenvectors as these are independent of
the mean-field Laplacian’s elements ci [19], just because of
the circulant structure of the mean-field graph Laplacian.
Consequently, the eigenvectors are the same and always
nonlocalized, independent of the system’s parameters N , k,
and q. Studying distributed patterns of relaxation processes
and potential localization phenomena thus requires access to
eigenvectors beyond the mean-field approximation. Studies
of the Laplacian eigenvectors are rare, although there are
fascinating results as well. For instance, the discrete analogs
of solutions of the Schrödinger equation on manifolds can be
investigated on graphs (cf., e.g., Ref. [11]).

The simple mean-field approach presented above still
substantially reduces computational efforts when studying
randomized (regular or small-world) network models.

Generalizing our mean-field approach to higher dimensions
and/or to other rewiring approaches, as for instance, relevant
for neural network modeling [66], it will serve as a powerful
tool to gain new insights into the relations between structural
and dynamical properties of complex networks.
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