61 research outputs found

    Structural aspects of tilings

    Get PDF
    In this paper, we study the structure of the set of tilings produced by any given tile-set. For better understanding this structure, we address the set of finite patterns that each tiling contains. This set of patterns can be analyzed in two different contexts: the first one is combinatorial and the other topological. These two approaches have independent merits and, once combined, provide somehow surprising results. The particular case where the set of produced tilings is countable is deeply investigated while we prove that the uncountable case may have a completely different structure. We introduce a pattern preorder and also make use of Cantor-Bendixson rank. Our first main result is that a tile-set that produces only periodic tilings produces only a finite number of them. Our second main result exhibits a tiling with exactly one vector of periodicity in the countable case.Comment: 11 page

    Aperiodic Tilings: Breaking Translational Symmetry

    Full text link
    Classical results on aperiodic tilings are rather complicated and not widely understood. Below, an alternative approach is discussed in hope to provide additional intuition not apparent in classical works.Comment: 4 pages, 2 figures, minor change

    1D Effectively Closed Subshifts and 2D Tilings

    Full text link
    Michael Hochman showed that every 1D effectively closed subshift can be simulated by a 3D subshift of finite type and asked whether the same can be done in 2D. It turned out that the answer is positive and necessary tools were already developed in tilings theory. We discuss two alternative approaches: first, developed by N. Aubrun and M. Sablik, goes back to Leonid Levin; the second one, developed by the authors, goes back to Peter Gacs.Comment: Journ\'ees Automates Cellulaires, Turku : Finland (2010

    Aperiodic tilings and entropy

    Full text link
    In this paper we present a construction of Kari-Culik aperiodic tile set - the smallest known until now. With the help of this construction, we prove that this tileset has positive entropy. We also explain why this result was not expected

    Quasiperiodicity and non-computability in tilings

    Full text link
    We study tilings of the plane that combine strong properties of different nature: combinatorial and algorithmic. We prove existence of a tile set that accepts only quasiperiodic and non-recursive tilings. Our construction is based on the fixed point construction; we improve this general technique and make it enforce the property of local regularity of tilings needed for quasiperiodicity. We prove also a stronger result: any effectively closed set can be recursively transformed into a tile set so that the Turing degrees of the resulted tilings consists exactly of the upper cone based on the Turing degrees of the later.Comment: v3: the version accepted to MFCS 201
    • …
    corecore