358 research outputs found

    Magnetic properties of a nanocrystalline material for current derivative sensors of magnets protection systems

    Get PDF
    Nanocrystalline materials are becoming ever more broadly used in transformer-based transducers due to their low losses, high relative permeability and high saturation flux density. In this paper, the magnetic characterization of one of these materials is presented by highlighting its influence on the performance of a current derivative sensor. This sensor was recently prototyped at CERN in the framework of the consolidation activity on the quench protection of superconducting magnets for the high-luminosity upgrade of the Large Hadron Collider. The performance is analyzed in terms of linearity and dynamic response

    Effect of the Insulating Layer on the Properties of SMC Inductors

    Get PDF
    In inductor applications, different soft magnetic materials are used depending on the frequency range. Owing to powder metallurgy technology and to the increase in the implementation of innovative multifunctional materials, it is possible to find an alternative to the traditional magnetic materials of the inductance application sector. This study concerns a deep analysis related to soft magnetic composite materials. The insulating layer's effect is investigated to explore the applicability of such materials to the inductor sector. Four coatings systems are selected and two types of samples are prepared in the shape of a toroid and a rod, which are tested in different operating conditions. The rod inductors are also compared with a traditional one, based on soft ferrite materials. This work aims to integrate data coming from different measuring devices: the useful small-signal measurements of an RLC meter are completed by large-cycle data measured through a hysteresigraph. Different parameters are considered for the investigation: magnetic permeability (maximum and initial), iron losses at different induction peak values, and inductor quality factor are the most important. The obtained results prove that each analysis type is not fully reliable without the other in determining the coatings' effects on the SMC inductors' performance. In the end, it is demonstrated that SMC inductances can be successfully applied in a particular frequency range

    Rapid Characterization Method for SMC Materials for a Preliminary Selection

    Get PDF
    In electrical machines, laminated steels are commonly adopted as soft magnetic materials, while for permanent magnets, sintered ferrites and NdFeB are the most common solutions. On the other hand, the growing demand for volume reduction with the increment of efficiency leads to the necessity of exploring other magnetic materials able to face the challenge better than the traditional ones. Bonded magnets have been used to replace sintered magnets, obtaining a better use of space and particular magnetic properties. Instead, for the magnetic circuit, Soft Magnetic Composites (SMC) allow realizing very complex magnetic design (3D path for flux) with iron loss reduction at medium-high frequencies, especially for the eddy currents loss contribution. On the other hand, SMC materials have such drawbacks as low mechanical properties and high hysteresis losses. For this reason, in this work, different studies considering several variables have been carried out. SMCs were produced through a moulding process; inorganic and organic layers to cover ferromagnetic particles were used, adopting different coating processes. Particu-lar tests have been performed for a quicker and more indicative overview of the materials ob-tained. The single sheet tester (SST) is easier than traditional toroidal methods; on the other hand, the multiplicity of variables affects the SMC materials and their process. For this reason, coercivity and conductibility tests permit rapid measurement and provide a direct classification of the produced SMCs, providing the main information needed to select suitable materials. Re-sults highlighted that choosing the more appropriate SMC material is possible after using these simple preliminary tests. After these tests, it was possible to argue that with 0.2 wt% of phenolic resin as the organic layer (and compaction pressure of 800 MPa), it is possible to produce a good SMC. On the other hand, the SMC with 0.2 wt% of epoxy resin (and compaction pressure of 800 MPa) gives a minor coercivity value. Additionally, despite the SMC with the inorganic layer, 0.2 wt% of nano-ferrites showing the best coercivity values (specifically for vacuum treatment at 600 °C), their resistivity was unsatisfactory

    Modeling and Optimization Algorithm for SiC-based Three-phase Motor Drive System

    Get PDF
    More electric aircraft (MEA) and electrified aircraft propulsion (EAP) becomes the important topics in the area of transportation electrifications, expecting remarkable environmental and economic benefits. However, they bring the urgent challenges for the power electronics design since the new power architecture in the electrified aircraft requires many benchmark designs and comparisons. Also, a large number of power electronics converter designs with different specifications and system-level configurations need to be conducted in MEA and EAP, which demands huge design efforts and costs. Moreover, the long debugging and testing process increases the time to market because of gaps between the paper design and implementation. To address these issues, this dissertation covers the modeling and optimization algorithms for SiC-based three-phase motor drive systems in aviation applications. The improved models can help reduce the gaps between the paper design and implementation, and the implemented optimization algorithms can reduce the required execution time of the design program. The models related to magnetic core based inductors, geometry layouts, switching behaviors, device loss, and cooling design have been explored and improved, and several modeling techniques like analytical, numerical, and curve-fitting methods are applied. With the developed models, more physics characteristics of power electronics components are incorporated, and the design accuracy can be improved. To improve the design efficiency and to reduce the design time, optimization schemes for the filter design, device selection combined with cooling design, and system-level optimization are studied and implemented. For filter design, two optimization schemes including Ap based weight prediction and particle swarm optimization are adopted to reduce searching efforts. For device selection and related cooling design, a design iteration considering practical layouts and switching speed is proposed. For system-level optimization, the design algorithm enables the evaluation of different topologies, modulation schemes, switching frequencies, filter configurations, cooling methods, and paralleled converter structure. To reduce the execution time of system-level optimization, a switching function based simulation and waveform synthesis method are adopted. Furthermore, combined with the concept of design automation, software integrated with the developed models, optimization algorithms, and simulations is developed to enable visualization of the design configurations, database management, and design results

    Broadband magnetic losses of nanocrystalline ribbons and powder cores

    Get PDF
    partially_open7sìFinemet type alloys have been investigated from DC to 1 GHz at different induction levels upon different treatments: as amorphous precursors, as ribbons nanocrystallized with and without an applied saturating field, as consolidated powders. The lowest energy losses at all frequencies and maximum Snoek's product are exhibited by the transversally field-annealed ribbons. This is understood in terms of rotation-dominated magnetization process in the low-anisotropy material. Intergrain eddy currents are responsible for the fast increase of the losses with frequency and for early permeability relaxation of the powder cores. Evidence for resonant phenomena at high frequencies and for the ensuing inadequate role of the static magnetic constitutive equation of the material in solving the magnetization dynamics via the Maxwell's diffusion equation of the electromagnetic field is provided. It is demonstrated that, by taking the Landau–Lifshitz–Gilbert equation as a constitutive relation, the excellent frequency response of the transverse anisotropy ribbons can be described by analytical method.partially_openBeatrice, Cinzia; Dobák, Samuel; Ferrara, Enzo; Fiorillo, Fausto; Ragusa, Carlo; Füzer, Ján; Kollár, PeterBeatrice, Cinzia; Dobák, Samuel; Ferrara, Enzo; Fiorillo, Fausto; Ragusa, Carlo; Füzer, Ján; Kollár, Pete

    Power Analysis of Toroidal Core Electromagnetic Energy Harvesters for Transmission Lines

    Get PDF
    Introduction. As the need for energy increases, energy harvesting methods have also been intensively researched. Energy harvesting techniques which are a way of converting low amounts of energy from the environment into electrical energy can be used to meet the energy needs of low-power electronic devices and sensors. The increase in such sensors and devices with low power consumption also makes energy harvesting techniques more important. One of these harvesting techniques is energy harvesting from electromagnetic fields, which is obtained from transmission lines. Aim of the Article. The article is aimed at developing an effective electromagnetic energy harvester from energy transmission lines for unmanned aerial vehicles. Materials and Methods. The method of harvesting energy from transmission lines through magnetic field energy harvesting is reviewed. Theoretical analyses, Finite Element Analyses (FEA), and experimental studies are conducted on toroidal core structures designed in different sizes and with different materials. Results. Among the selected materials and under the specified line conditions, current of 0‒30 A and a frequency of 50 Hz, the highest power of 695.516 mW was harvested by the 60x30x20 sized ferrite core harvester at a line current of 30 A. Discussion and Conclusion. Detailed experiments were conducted based on the 60x30x20 mm ferrite core, which demonstrated the highest induced voltage. Different load resistances were used to find the resistance value for the highest power at each current value. The optimal load resistance for maximum power transmission was determined for each core using the curve fitting method at all current values
    • …
    corecore