649 research outputs found

    Safe data structure visualisation

    Get PDF

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators

    Approximately Counting Triangles in Sublinear Time

    Full text link
    We consider the problem of estimating the number of triangles in a graph. This problem has been extensively studied in both theory and practice, but all existing algorithms read the entire graph. In this work we design a {\em sublinear-time\/} algorithm for approximating the number of triangles in a graph, where the algorithm is given query access to the graph. The allowed queries are degree queries, vertex-pair queries and neighbor queries. We show that for any given approximation parameter 0<ϵ<10<\epsilon<1, the algorithm provides an estimate t^\widehat{t} such that with high constant probability, (1ϵ)t<t^<(1+ϵ)t(1-\epsilon)\cdot t< \widehat{t}<(1+\epsilon)\cdot t, where tt is the number of triangles in the graph GG. The expected query complexity of the algorithm is  ⁣(nt1/3+min{m,m3/2t})poly(logn,1/ϵ)\!\left(\frac{n}{t^{1/3}} + \min\left\{m, \frac{m^{3/2}}{t}\right\}\right)\cdot {\rm poly}(\log n, 1/\epsilon), where nn is the number of vertices in the graph and mm is the number of edges, and the expected running time is  ⁣(nt1/3+m3/2t)poly(logn,1/ϵ)\!\left(\frac{n}{t^{1/3}} + \frac{m^{3/2}}{t}\right)\cdot {\rm poly}(\log n, 1/\epsilon). We also prove that Ω ⁣(nt1/3+min{m,m3/2t})\Omega\!\left(\frac{n}{t^{1/3}} + \min\left\{m, \frac{m^{3/2}}{t}\right\}\right) queries are necessary, thus establishing that the query complexity of this algorithm is optimal up to polylogarithmic factors in nn (and the dependence on 1/ϵ1/\epsilon).Comment: To appear in the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015

    Line-Graph Lattices: Euclidean and Non-Euclidean Flat Bands, and Implementations in Circuit Quantum Electrodynamics

    Full text link
    Materials science and the study of the electronic properties of solids are a major field of interest in both physics and engineering. The starting point for all such calculations is single-electron, or non-interacting, band structure calculations, and in the limit of strong on-site confinement this can be reduced to graph-like tight-binding models. In this context, both mathematicians and physicists have developed largely independent methods for solving these models. In this paper we will combine and present results from both fields. In particular, we will discuss a class of lattices which can be realized as line graphs of other lattices, both in Euclidean and hyperbolic space. These lattices display highly unusual features including flat bands and localized eigenstates of compact support. We will use the methods of both fields to show how these properties arise and systems for classifying the phenomenology of these lattices, as well as criteria for maximizing the gaps. Furthermore, we will present a particular hardware implementation using superconducting coplanar waveguide resonators that can realize a wide variety of these lattices in both non-interacting and interacting form

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Sparsification of Directed Graphs via Cut Balance

    Get PDF

    Dominoes

    Get PDF
    corecore