10,557 research outputs found

    Building Efficient Query Engines in a High-Level Language

    Get PDF
    Abstraction without regret refers to the vision of using high-level programming languages for systems development without experiencing a negative impact on performance. A database system designed according to this vision offers both increased productivity and high performance, instead of sacrificing the former for the latter as is the case with existing, monolithic implementations that are hard to maintain and extend. In this article, we realize this vision in the domain of analytical query processing. We present LegoBase, a query engine written in the high-level language Scala. The key technique to regain efficiency is to apply generative programming: LegoBase performs source-to-source compilation and optimizes the entire query engine by converting the high-level Scala code to specialized, low-level C code. We show how generative programming allows to easily implement a wide spectrum of optimizations, such as introducing data partitioning or switching from a row to a column data layout, which are difficult to achieve with existing low-level query compilers that handle only queries. We demonstrate that sufficiently powerful abstractions are essential for dealing with the complexity of the optimization effort, shielding developers from compiler internals and decoupling individual optimizations from each other. We evaluate our approach with the TPC-H benchmark and show that: (a) With all optimizations enabled, LegoBase significantly outperforms a commercial database and an existing query compiler. (b) Programmers need to provide just a few hundred lines of high-level code for implementing the optimizations, instead of complicated low-level code that is required by existing query compilation approaches. (c) The compilation overhead is low compared to the overall execution time, thus making our approach usable in practice for compiling query engines

    Palgol: A High-Level DSL for Vertex-Centric Graph Processing with Remote Data Access

    Full text link
    Pregel is a popular distributed computing model for dealing with large-scale graphs. However, it can be tricky to implement graph algorithms correctly and efficiently in Pregel's vertex-centric model, especially when the algorithm has multiple computation stages, complicated data dependencies, or even communication over dynamic internal data structures. Some domain-specific languages (DSLs) have been proposed to provide more intuitive ways to implement graph algorithms, but due to the lack of support for remote access --- reading or writing attributes of other vertices through references --- they cannot handle the above mentioned dynamic communication, causing a class of Pregel algorithms with fast convergence impossible to implement. To address this problem, we design and implement Palgol, a more declarative and powerful DSL which supports remote access. In particular, programmers can use a more declarative syntax called chain access to naturally specify dynamic communication as if directly reading data on arbitrary remote vertices. By analyzing the logic patterns of chain access, we provide a novel algorithm for compiling Palgol programs to efficient Pregel code. We demonstrate the power of Palgol by using it to implement several practical Pregel algorithms, and the evaluation result shows that the efficiency of Palgol is comparable with that of hand-written code.Comment: 12 pages, 10 figures, extended version of APLAS 2017 pape

    Using shared-data localization to reduce the cost of inspector-execution in unified-parallel-C programs

    Get PDF
    Programs written in the Unified Parallel C (UPC) language can access any location of the entire local and remote address space via read/write operations. However, UPC programs that contain fine-grained shared accesses can exhibit performance degradation. One solution is to use the inspector-executor technique to coalesce fine-grained shared accesses to larger remote access operations. A straightforward implementation of the inspector executor transformation results in excessive instrumentation that hinders performance.; This paper addresses this issue and introduces various techniques that aim at reducing the generated instrumentation code: a shared-data localization transformation based on Constant-Stride Linear Memory Descriptors (CSLMADs) [S. Aarseth, Gravitational N-Body Simulations: Tools and Algorithms, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2003.], the inlining of data locality checks and the usage of an index vector to aggregate the data. Finally, the paper introduces a lightweight loop code motion transformation to privatize shared scalars that were propagated through the loop body.; A performance evaluation, using up to 2048 cores of a POWER 775, explores the impact of each optimization and characterizes the overheads of UPC programs. It also shows that the presented optimizations increase performance of UPC programs up to 1.8 x their UPC hand-optimized counterpart for applications with regular accesses and up to 6.3 x for applications with irregular accesses.Peer ReviewedPostprint (author's final draft

    Simple and Effective Type Check Removal through Lazy Basic Block Versioning

    Get PDF
    Dynamically typed programming languages such as JavaScript and Python defer type checking to run time. In order to maximize performance, dynamic language VM implementations must attempt to eliminate redundant dynamic type checks. However, type inference analyses are often costly and involve tradeoffs between compilation time and resulting precision. This has lead to the creation of increasingly complex multi-tiered VM architectures. This paper introduces lazy basic block versioning, a simple JIT compilation technique which effectively removes redundant type checks from critical code paths. This novel approach lazily generates type-specialized versions of basic blocks on-the-fly while propagating context-dependent type information. This does not require the use of costly program analyses, is not restricted by the precision limitations of traditional type analyses and avoids the implementation complexity of speculative optimization techniques. We have implemented intraprocedural lazy basic block versioning in a JavaScript JIT compiler. This approach is compared with a classical flow-based type analysis. Lazy basic block versioning performs as well or better on all benchmarks. On average, 71% of type tests are eliminated, yielding speedups of up to 50%. We also show that our implementation generates more efficient machine code than TraceMonkey, a tracing JIT compiler for JavaScript, on several benchmarks. The combination of implementation simplicity, low algorithmic complexity and good run time performance makes basic block versioning attractive for baseline JIT compilers
    • …
    corecore