49 research outputs found

    Metrical Service Systems with Multiple Servers

    Full text link
    We study the problem of metrical service systems with multiple servers (MSSMS), which generalizes two well-known problems -- the kk-server problem, and metrical service systems. The MSSMS problem is to service requests, each of which is an ll-point subset of a metric space, using kk servers, with the objective of minimizing the total distance traveled by the servers. Feuerstein initiated a study of this problem by proving upper and lower bounds on the deterministic competitive ratio for uniform metric spaces. We improve Feuerstein's analysis of the upper bound and prove that his algorithm achieves a competitive ratio of k((k+ll)−1)k({{k+l}\choose{l}}-1). In the randomized online setting, for uniform metric spaces, we give an algorithm which achieves a competitive ratio O(k3log⁥l)\mathcal{O}(k^3\log l), beating the deterministic lower bound of (k+ll)−1{{k+l}\choose{l}}-1. We prove that any randomized algorithm for MSSMS on uniform metric spaces must be Ω(log⁥kl)\Omega(\log kl)-competitive. We then prove an improved lower bound of (k+2l−1k)−(k+l−1k){{k+2l-1}\choose{k}}-{{k+l-1}\choose{k}} on the competitive ratio of any deterministic algorithm for (k,l)(k,l)-MSSMS, on general metric spaces. In the offline setting, we give a pseudo-approximation algorithm for (k,l)(k,l)-MSSMS on general metric spaces, which achieves an approximation ratio of ll using klkl servers. We also prove a matching hardness result, that a pseudo-approximation with less than klkl servers is unlikely, even for uniform metric spaces. For general metric spaces, we highlight the limitations of a few popular techniques, that have been used in algorithm design for the kk-server problem and metrical service systems.Comment: 18 pages; accepted for publication at COCOON 201

    Randomized online computation with high probability guarantees

    Full text link
    We study the relationship between the competitive ratio and the tail distribution of randomized online minimization problems. To this end, we define a broad class of online problems that includes some of the well-studied problems like paging, k-server and metrical task systems on finite metrics, and show that for these problems it is possible to obtain, given an algorithm with constant expected competitive ratio, another algorithm that achieves the same solution quality up to an arbitrarily small constant error a with high probability; the "high probability" statement is in terms of the optimal cost. Furthermore, we show that our assumptions are tight in the sense that removing any of them allows for a counterexample to the theorem. In addition, there are examples of other problems not covered by our definition, where similar high probability results can be obtained.Comment: 20 pages, 2 figure

    On Randomized Memoryless Algorithms for the Weighted kk-server Problem

    Full text link
    The weighted kk-server problem is a generalization of the kk-server problem in which the cost of moving a server of weight ÎČi\beta_i through a distance dd is ÎČi⋅d\beta_i\cdot d. The weighted server problem on uniform spaces models caching where caches have different write costs. We prove tight bounds on the performance of randomized memoryless algorithms for this problem on uniform metric spaces. We prove that there is an αk\alpha_k-competitive memoryless algorithm for this problem, where αk=αk−12+3αk−1+1\alpha_k=\alpha_{k-1}^2+3\alpha_{k-1}+1; α1=1\alpha_1=1. On the other hand we also prove that no randomized memoryless algorithm can have competitive ratio better than αk\alpha_k. To prove the upper bound of αk\alpha_k we develop a framework to bound from above the competitive ratio of any randomized memoryless algorithm for this problem. The key technical contribution is a method for working with potential functions defined implicitly as the solution of a linear system. The result is robust in the sense that a small change in the probabilities used by the algorithm results in a small change in the upper bound on the competitive ratio. The above result has two important implications. Firstly this yields an αk\alpha_k-competitive memoryless algorithm for the weighted kk-server problem on uniform spaces. This is the first competitive algorithm for k>2k>2 which is memoryless. Secondly, this helps us prove that the Harmonic algorithm, which chooses probabilities in inverse proportion to weights, has a competitive ratio of kαkk\alpha_k.Comment: Published at the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013

    Online optimization with switching cost

    Get PDF
    We consider algorithms for "smoothed online convex optimization (SOCO)" problems. SOCO is a variant of the class of "online convex optimization (OCO)" problems that is strongly related to the class of "metrical task systems", each of which have been studied extensively. Prior literature on these problems has focused on two performance metrics: regret and competitive ratio. There exist known algorithms with sublinear regret and known algorithms with constant competitive ratios; however no known algorithms achieve both. In this paper, we show that this is due to a fundamental incompatibility between regret and the competitive ratio -- no algorithm (deterministic or randomized) can achieve sublinear regret and a constant competitive ratio, even in the case when the objective functions are linear

    Concurrent Distributed Serving with Mobile Servers

    Get PDF
    This paper introduces a new resource allocation problem in distributed computing called distributed serving with mobile servers (DSMS). In DSMS, there are k identical mobile servers residing at the processors of a network. At arbitrary points of time, any subset of processors can invoke one or more requests. To serve a request, one of the servers must move to the processor that invoked the request. Resource allocation is performed in a distributed manner since only the processor that invoked the request initially knows about it. All processors cooperate by passing messages to achieve correct resource allocation. They do this with the goal to minimize the communication cost. Routing servers in large-scale distributed systems requires a scalable location service. We introduce the distributed protocol Gnn that solves the DSMS problem on overlay trees. We prove that Gnn is starvation-free and correctly integrates locating the servers and synchronizing the concurrent access to servers despite asynchrony, even when the requests are invoked over time. Further, we analyze Gnn for "one-shot" executions, i.e., all requests are invoked simultaneously. We prove that when running Gnn on top of a special family of tree topologies - known as hierarchically well-separated trees (HSTs) - we obtain a randomized distributed protocol with an expected competitive ratio of O(log n) on general network topologies with n processors. From a technical point of view, our main result is that Gnn optimally solves the DSMS problem on HSTs for one-shot executions, even if communication is asynchronous. Further, we present a lower bound of Omega(max {k, log n/log log n}) on the competitive ratio for DSMS. The lower bound even holds when communication is synchronous and requests are invoked sequentially
    corecore