
Concurrent Distributed Serving with Mobile
Servers
Abdolhamid Ghodselahi
Institute of Telematics, Hamburg University of Technology, Germany
abdolhamid.ghodselahi@tuhh.de

Fabian Kuhn
Department of Computer Science, University of Freiburg, Germany
kuhn@cs.uni-freiburg.de

Volker Turau
Institute of Telematics, Hamburg University of Technology, Germany
turau@tuhh.de

Abstract

This paper introduces a new resource allocation problem in distributed computing called distributed
serving with mobile servers (DSMS). In DSMS, there are k identical mobile servers residing at the
processors of a network. At arbitrary points of time, any subset of processors can invoke one or more
requests. To serve a request, one of the servers must move to the processor that invoked the request.
Resource allocation is performed in a distributed manner since only the processor that invoked the
request initially knows about it. All processors cooperate by passing messages to achieve correct
resource allocation. They do this with the goal to minimize the communication cost.

Routing servers in large-scale distributed systems requires a scalable location service. We
introduce the distributed protocol Gnn that solves the DSMS problem on overlay trees. We prove that
Gnn is starvation-free and correctly integrates locating the servers and synchronizing the concurrent
access to servers despite asynchrony, even when the requests are invoked over time. Further, we
analyze Gnn for “one-shot” executions, i.e., all requests are invoked simultaneously. We prove that
when running Gnn on top of a special family of tree topologies – known as hierarchically well-
separated trees (HSTs) – we obtain a randomized distributed protocol with an expected competitive
ratio of O

(
logn

)
on general network topologies with n processors. From a technical point of view, our

main result is that Gnn optimally solves the DSMS problem on HSTs for one-shot executions, even
if communication is asynchronous. Further, we present a lower bound of Ω(max{k, logn/ log logn})
on the competitive ratio for DSMS. The lower bound even holds when communication is synchronous
and requests are invoked sequentially.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of compu-
tation → Distributed algorithms; Theory of computation → Graph algorithms analysis; Theory of
computation → Discrete optimization

Keywords and phrases Distributed online resource allocation, Distributed directory, Asynchronous
communication, Amortized analysis, Tree embeddings

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.53

Related Version A full version of this paper is available at https://arxiv.org/abs/1902.07354
[14].

Funding This work is supported by the Deutsche Forschungsgemeinschaft (DFG), under grant DFG
TU 221/6-3.

© Abdolhamid Ghodselahi, Fabian Kuhn, and Volker Turau;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 53; pp. 53:1–53:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abdolhamid.ghodselahi@tuhh.de
mailto:kuhn@cs.uni-freiburg.de
mailto:turau@tuhh.de
https://doi.org/10.4230/LIPIcs.ISAAC.2019.53
https://arxiv.org/abs/1902.07354
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 Concurrent Distributed Serving with Mobile Servers

1 Introduction

Consider the following family of online resource allocation problems. We are given a metric
space with n points. Initially, a set of k ≥ 11 identical mobile servers are residing at different
points of the metric space. Requests arrive over time in an online fashion, that is, one or
several requests can arrive at any point of time. A request needs to be served by a server at
the requesting point sometime after its arrival. The goal is to provide a schedule for serving
all requests. This abstract problem lies at the heart of many centralized and distributed
online applications in industrial planning, operating systems, content distribution in networks,
and scheduling [3, 7, 8, 16, 21]. Each concrete problem of this family is characterized by
a cost function. We study this abstract problem in distributed computing and call it the
distributed serving with mobile servers (DSMS) problem. A distributed protocol Alg that
solves the DSMS problem must compute a schedule for each server consisting of a queue of
requests such that consecutive requests are successively served, and all requests are served.
The k schedules are distributedly stored at the requesting nodes: each node knows for each
of its requests the node which invoked the subsequent request in the schedule so that a server
after serving one request can subsequently move to the next node (not necessarily a different
node). As long as new requests are invoked the schedule is extended. Therefore, in response
to the appearance of a new request at a given processor, Alg must contact a processor that
invoked a request but yet has no successor request in the global schedule, to instruct the
motion of the corresponding server. This will result in the entry of a server to the requesting
processor. Sending a server from a processor to another one is done using an underlying
routing scheme that routes most efficiently. The goal is to minimize the ratio between the
communication costs of an online and an optimal offline protocols that solve DSMS. We
assume that an optimal offline DSMS protocol Opt knows the whole sequence of requests in
advance. However, Opt still needs to send messages from each request to its predecessor
request. The DSMS problem has some interesting applications. We state two of them:

Distributed k-server problem

The k-server problem [5, 18], is arguably one of the most influential research problems in the
area of online algorithms and competitive analysis. The distributed k-server was studied in
[8] where requests arrive sequentially one by one, but only after the current request is served.
The cost function for this problem is defined as the sum of all communication costs and the
total movement costs of all servers. A generalization of the k-server problem where requests
can arrive over time is called the online service with delay (OSD) problem [4, 9]. The OSD
cost function is defined as the sum of the total movement costs of all servers and the total
delay cost. The delay of a request is the difference between the service and the arrival times.

Distributed queuing problem

This problem is an application of DSMS with k = 1 , i.e., only one server or shared object
[10, 15, 16]. The distributed queuing problem is at the core of many distributed problems
that schedule concurrent access requests to a shared object. The goal is to minimize the sum
of the total communication cost and the total “waiting time”. The waiting time of a request
is the difference between the times when the request message reaches the processor of the
predecessor request and when the predecessor request is invoked. Note that in this problem,

1 Table 1 provides an index for the essential notations used throughout the paper.

A. Ghodselahi, F. Kuhn, and V. Turau 53:3

the processor of a request must only send one message to the processor of the predecessor
request in the global schedule. Two well-known applications for this problem are distributed
mutual exclusion [19, 21, 22] and distributed transactional memory [24].

Next, we explain why DSMS is also interesting from a theoretical point of view even for
one-shot executions, that is, when all requests are simultaneously invoked. Figure 1 shows a
rooted tree T , where the lengths of all edges of each level are equal. Further, the length of
every edge is shorter than the length of its parent edge by some factor larger than one. A set
of six requests arrive at the leaves of T at the same time. Two servers s0, s1 are initially
located at the points that invoked requests r1

0 and r2
0. Serving the requests r1

0 and r2
0 does

not require communication, and these two requests are the current tails of the queues of s0
and s1. The requests r1

0 and r2
0 are at the heads of the two queues. An optimal solution

for serving the remaining requests is that s0 consecutively serves the requests rb, rc, and ra
after serving r1

0, while s1 serves rd after having served r2
0. Next, consider an asynchronous

network where, in contrast with a synchronous network where there is a global clock, message
latencies are arbitrary and protocols have no control over these latencies. A possible schedule,
in this case, is shown in Figure 1: Request ra is scheduled after r1

0, rb after ra, and rd after
rb, since the message latency of a request further away can be much less than the latency of
a closer request. This can lead to complications with regard to improving the locality as it is
met in the above optimal solution.

T

rd r20 r10 rb

T ′′

ra

T ′

rc

Figure 1 A distributed protocol may lead to complications with regard to improving locality.

GNN protocol

We devise the generalized nearest-neighbor (Gnn) protocol that greedily solves the DSMS
problem on overlay trees. An overlay tree T is a rooted tree that is constructed on top
of the underlying network. The processors of the original network are in a one-to-one
correspondence with the leaves of T . Hence, only T 's leaves can invoke requests, and the
remaining overlay nodes are artificial. The k servers reside at different leaves of T . Initially,
all edges of T are oriented such that from each leaf there is a directed path to a leaf, where a
server resides. This also implies that every leaf node with a server has a self-loop. Roughly
speaking, the main idea of Gnn is to update the directions of edges with respect to future
addresses of a server. A leaf invoking a request forwards a message along the directed links,
the orientations of all these links are inverted. When a message reaches a node and finds
several outgoing (upward/downward) links, it is forwarded via an arbitrary downward link
to find the current or a future address of a server. We show that in Gnn a processor holding
a request always sends a message through a direct path to the processor of the predecessor
request in the global schedule. We refer to Section 3 for a formal description of Gnn.

ISAAC 2019

53:4 Concurrent Distributed Serving with Mobile Servers

1.1 Our Contribution
This paper introduces the DSMS problem as a distributed online allocation problem. We
devise the greedy protocol Gnn that solves the DSMS problem on overlay trees. We prove
that even in an asynchronous system Gnn operates correctly, that is, it does not suffer
from starvation, nor livelocks, or deadlocks. To the best of our knowledge, Gnn is the first
link-reversal-based protocol that supports navigating more than one server.

I Theorem 1. Suppose the overlay tree T is constructed on top of a distributed network.
Consider the DSMS problem on T where a set of k ≥ 1 identical mobile servers are initially
located at different leaves of T . Further, a sequence of requests can be invoked at any time by
the leaves of T . Then Gnn schedules all requests to be served by some server at the requested
points in a finite time despite asynchrony.

While Gnn itself solves any instance of the DSMS problem, we analyze Gnn for the
particular case that the requests are simultaneously invoked. We consider general distributed
networks with n processors. We model such a network by a graph G. A hierarchically
well-separated tree (HST) is an overlay tree with parameter α > 1, that is, an α-HST is a
rooted tree where every edge weight is shorter by a factor of α from its parent edge weight.
A tree is an HST if it is an α-HST for some α > 1. There is a randomized embedding of
any graph into a distribution over HSTs [6, 11]. We sample an HST T according to the
distribution defined by the embedding. We consider an instance I of the DSMS problem
where the communication is asynchronous, and the requests are simultaneously invoked by
the nodes of G. When running Gnn on T , we get a randomized distributed protocol on G
that solves I with an expected competitive ratio of O

(
logn

)
against oblivious adversaries2.

I Theorem 2. Let I denote an instance of the DSMS problem consisting of an asynchronous
network with n processors and a set of requests that are simultaneously invoked by processors
of the network. There is a randomized distributed protocol that solves I with an expected
competitive ratio of O(logn) against an oblivious adversary.

Consider an instance I of DSMS that consists of an HST T where communication is
asynchronous and a set of requests that are simultaneously invoked by the leaves of T .
Analyzing Gnn for I turns out to be involved and non-trivial. The fact that the Gnn (as
any other protocol) has no control on the message latencies bears a superficial resemblance
to the case where the requests are invoked over time. Hence, when analyzing Gnn for I, one
faces the following complications: 1) A server may go back to a subtree of T after having left
it. 2) A request in a subtree of T that initially hosts at least one server can be served by a
server that is initially outside this subtree. 3) Different servers can serve two requests in a
subtree of T that does not initially host any server. Theorem 2 is derived from our main
technical result for HSTs.

I Theorem 3. Consider an instance I of DSMS that consists of an HST T where even the
communication is asynchronous and a set of requests that are simultaneously invoked by the
leaves of T . The Gnn protocol optimally solves I.

One-shot executions of the distributed queuing problem for synchronous communication
were already considered in [16]. The following corollary follows from Theorem 3.

I Corollary 4. Gnn optimally solves the distributed queuing problem on HSTs for one-shot
executions even when the communication is asynchronous.

2 This assumes that the sequence of requests is statistically independent of the randomness used for
constructing the given tree.

A. Ghodselahi, F. Kuhn, and V. Turau 53:5

We provide a simple reduction form the distributed k-server problem to the DSMS
problem. Our following lower bound is obtained using this reduction and an existing lower
bound [8] on the competitive ratio for the distributed k-server problem.

I Theorem 5. There is a network topology with n processors – for all n – such that there is no
online distributed protocol solving DSMS with a competitive ratio of o(max{k, logn/ log logn})
against adaptive online adversaries where k is the number of servers. This result even holds
when requests are invoked one by one by processors in a sequential manner and even when
the communication is synchronous.

2 Model, Problem Statement, and Preliminaries

2.1 Communication Model
We consider a point-to-point communication network that is modeled by a graph G = (V,E),
where the n nodes in V represent the processors of the network and the edges in E represent
bidirectional communication links between the corresponding processors. We suppose that
the edge weights are positive and are normalized such that the weight of each edge will be at
least 1. If G is unweighted, then we assume that the weight of an edge is 1. We consider the
message passing model [20] where neighboring processors can exchange messages with each
other. The communication links can have different latencies. These latencies are not even
under control of an optimal offline distributed protocol. We consider both synchronous and
asynchronous systems. In a synchronous system, the latency for sending a message over an
edge equals the weight of the edge. In an asynchronous system, in contrast, the messages
arrive at their destinations after a finite but unbounded amount of time. Messages that
take a longer path may arrive earlier, and the receiver of a message can never distinguish
whether a message is still in transit or whether it has been sent at all. For our analysis,
however, we adhere to the conventional approach where the latencies are scaled such that
the latency for sending a message over an edge is upper bounded by the edge weight in the
“worst case” (for every legal input and in every execution scenario) (see Section 2.2 in [20]
for more information).

2.2 Distributed Serving with Mobile Servers (DSMS) Problem
The input for DSMS problem for a graph G consists of k ≥ 1 identical mobile servers that
are initially located at different nodes of G and a set R of requests that are invoked at the
nodes at any time. A request ri ∈ R is represented by (vi, ti) where node vi invoked request
ri at time ti ≥ 0. A distributed protocol Alg that solves the DSMS problem needs to serve
each request with one of the k servers at the requested node. Hence, Alg must schedule
all requests that access a particular server. Consequently, Alg outputs k global schedules.
Let πzAlg where z ∈ {1, . . . , k} denote the z-th schedule generated by Alg, and sz be the
z-th server. The request sets of these k schedules form a partition of R, and all requests of
the schedule πzAlg consecutively access the server sz. We assume that at time 0, when an
execution starts, the tail of schedule πzAlg is at a given node vz0 ∈ V that hosts sz. Formally,
this is modeled as a “dummy request” rz0 = (vz0 , 0) that has to be scheduled first in the
schedule πzAlg by Alg. Consider two requests ri and rj that are consecutively served by sz
where ri is scheduled after rj . To schedule request ri the protocol needs to inform node vj ,
the predecessor request rj in the constructed schedule. As soon as rj is served by sz, node
vj sends the server to vi for serving ri using an underlying routing facility that efficiently
routes messages. The goal is to minimize the total communication cost, i.e., the sum of the
latencies of all messages sent during the execution of Alg.

ISAAC 2019

53:6 Concurrent Distributed Serving with Mobile Servers

2.3 Preliminaries
Consider a distributed protocol Alg for the DSMS problem when requests can arrive at
any time. Let R denote the set of requests, including the dummy requests. Assume that
Alg partitions R into k sets R1

Alg, . . . ,RkAlg, and that it schedules the requests in set RzAlg
according to permutation πzAlg. Denote the request at position i of πzAlg by rπz

Alg(i). The
dummy request rz0 of πzAlg is represented by rπz

Alg(0). Consider a message denoted by µ. Let
`Alg(µ) denote the latency of message µ as routed by Alg. For every i ∈ {1, . . . , |R| − 1}, if
ri belongs to RzAlg, the communication cost cAlg

(
rπz

Alg(i−1), rπz
Alg(i)

)
incurred for scheduling

rπz
Alg(i) as the successor of rπz

Alg(i−1) is the sum of the latencies of all messages sent by Alg
to schedule rπz

Alg(i) immediately after rπz
Alg(i−1). The total communication cost of Alg for

scheduling all requests in RzAlg is defined as

CAlg(πzAlg) :=
|Rz

Alg|−1∑
i=1

cAlg

(
rπz

Alg(i−1), rπz
Alg(i)

)
. (1)

The total communication cost of Alg for scheduling all requests in R, therefore, is

CAlg :=
k∑
z=1

CAlg(πzAlg). (2)

2.4 Hierarchically Well-Separated Trees (HSTs)
Embedding of a metric space into probability distributions over tree metrics have found
many important applications in both centralized and distributed settings [4, 5, 13]. The
notion of a hierarchically well-separated tree was defined by Bartal in [6].

I Definition 6 (α-HST). For α > 1 an α-HST of depth h is a rooted tree with the following
properties: The children of the root are at a distance αh−1 from the root and every subtree of
the root is an α-HST of depth h− 1. A tree is an HST if it is an α-HST for some α > 1.

The definition implies that the nodes two hops away from the root are at a distance αh−2

from their parents. The probabilistic tree embedding result of [11] shows that for every metric
space (X, d) with minimum distance normalized to 1 and for every constant α > 1 there is
a randomized construction of an α-HST T with a bijection f between the points in X and
the leaves of T such that a) the distances on T are dominating the distances in the metric
space (X, d), i.e., ∀x, y ∈ X : dT

(
f(x), f(y)

)
≥ d(x, y) and such that b) the expected tree

distance is E
[
dT
(
f(x), f(y)

)]
= O(α log |X|/ logα) · d(x, y) for every x, y ∈ X. The length

of the shortest path between any two leaves u and v of T is denoted by dT (u, v). An efficient
distributed construction of the probabilistic tree embedding of [11] has been given in [12].

3 The Distributed GNN Protocol

In this section the Gnn protocol is introduced.

3.1 Description of GNN
Gnn runs on overlay trees and outputs a feasible solution for the DSMS problem. Consider
a rooted tree T = (VT , ET) whose leaves correspond to the nodes of the underlying graph
G = (V,E), i.e., V ⊆ VT . Let n = |V |. The k ≥ 1 identical mobile servers are initially at
different leaves of T . Further, there is a dummy request at every leaf that initially hosts a

A. Ghodselahi, F. Kuhn, and V. Turau 53:7

server. The leaves of T can invoke requests at any time. A leaf node can invoke a request
while it is hosting a server and a leaf can also invoke a request while its previous requests
have not been served yet. Initially, a directed version of T is constructed and denoted by
H, the directed edges of H are called links. During an execution of Gnn, Gnn changes the
directions of the links. Denote by v.links the set of neighbors of v that are pointed by v.
After a leaf u has invoked a request it sends a find-predecessor message denoted by µ(u)
along the links to inform the node of the predecessor request in the global schedule. The
routing of µ(u) is explained below. At the beginning before any message is sent and for any
server, all the nodes on the direct path from the root of T to the leaf that hosts the server,
point to the server. Further, the host points to itself and creates a self-loop. Hence, we
have k directed paths with downward links from the root of T to the points of the current
tails of the schedules. Any other node points to its parent with an upward link. Therefore,
the sets v.links for all v ∈ VT are non-empty at the beginning of the executing the protocol.
Figure 2a shows the directed HST at the beginning as an example.

Algorithm 1 Gnn Protocol.

Input :The rooted tree T , k identical mobile servers that are initially at distinct
leaves of T , and a set of requests that are invoked over time

Output : k schedules for serving all requests
Upon requesting a service: Algorithm 2

Upon receiving a find-predecessor message: Algorithm 3

Upon u invoking a new request

Consider the leaf node u when it invokes a new request r. If u has a self-loop, then r is
scheduled immediately after the last request that has been invoked at u. Otherwise, the leaf
u atomically sends µ(u) to its parent through an upward link, u points to itself, and the
link from u to its parent is removed. We suppose that messages are reliably delivered. The
details of this part of the protocol are given by Algorithm 2. See Figure 2b as an example.

Algorithm 2 Upon u invoking a new request r.

1 do atomically
/* suppose u.links = {v} (u as a leaf always points either to itself or

to its parent) */
2 if u = v then
3 r is scheduled immediately after the last request that has been invoked by u
4 else
5 u sends µ(u) to v
6 u.links := {u}
7 end
8 end

Upon w receiving µ(u) from node v

Suppose that node w receives a find-predecessor message µ(u) from node v. The node w
executes the following steps atomically. If w has at least one downward link, then µ(u) is
forwarded to some child of w through a downward link (ties are broken arbitrarily). Then,
w removes the downward link and adds a link to v – independently of whether v is the

ISAAC 2019

53:8 Concurrent Distributed Serving with Mobile Servers

v

z w

u1 u2 u3 u4 u5

s s′

(a) initial system state.

v

z w

u1 u2 u3 u4 u5

µ2 µ4 µ5

s s′

(b) step 1.

v

z w

u1 u2 u3 u4 u5

µ2

µ4

µ5
s s′

(c) step 2.

Figure 2 Gnn protocol: (a) The servers s and s′ serve requests in schedules π and π′, respectively.
The dummy requests at u1 and u3 are the initial tails of π and π′, respectively. (b) Nodes u2, u3, u4,
and u5 respectively issue requests r2, r3, r4, and r5 at the same time and send the find-predecessor
messages µ2, µ3, µ4, and µ5, respectively, along the arrows. (c) The request r3 is the current tail of
π′. Both µ4 and µ5 reach w at the same time. First, the message µ4 is arbitrarily processed by w
and w forwards µ4 towards v and therefore µ5 is deflected towards u4.

parent or a child of w. If w does not have a downward link, it either points to itself, or it
has an upward link. In the latter case, µ(u) is atomically forwarded to the parent of w, the
upward link from w to its parent is removed and then w points to v using a downward link.
Otherwise, w is a leaf and points to itself. The request r invoked by u is scheduled after
the last request that has been invoked by w. Then, w removes the link that points to itself
and points to v using an upward link. The details of this part of the protocol are given by
Algorithm 3. Also, see Figure 2c and Figure 3.

Algorithm 3 Upon w receiving µ(u) from node v (w 6= v).

1 do atomically
2 if there exists a child node in w.links then
3 z =: an arbitrary child node in w.links
4 else
5 z =: the only node in w.links
6 end
7 w.links := w.links− {z}
8 w.links := w.links ∪ {v}
9 if z 6= w then

10 w sends µ(u) to z
11 else
12 the corresponding request to µ(u) is scheduled immediately after the last

request that has been invoked by w
13 end
14 end

3.2 Correctness of GNN
Regarding the description of Gnn, we need to show two invariants for Gnn. The first is that
Gnn eventually schedules all requests. The second one is that Gnn is starvation-free so that
a scheduled request is eventually served.

3.2.1 Scheduling Guarantee
I Theorem 7. Gnn guarantees that the find-predecessor message of any node that invokes a
request always reaches a leaf node v in a finite time such that v.links = {v}.

A. Ghodselahi, F. Kuhn, and V. Turau 53:9

v

z w

u1 u2 u3 u4 u5

µ4

s s′s′

(a) step 3.

v

z w

u1 u2 u3 u4 u5

µ4

s s′

(b) step 4.

v

z w

u1 u2 u3 u4 u5

ss′

(c) step 5.

Figure 3 Gnn protocol: (a) The request r2 is scheduled after the current tail of π and now r2 is
the current tail of π and u2 obtains the server s. The request r5 is scheduled after r4 while µ4 is
still in transit. (b) µ4 still follows arrows, reversing the directions of arrows along its way. (c) The
request r4 is scheduled after r2 and s moves to u4. After r4 served by s, then s moves from u4 to u5

since r5 has already been scheduled after r4. Figure 2–Figure 3 illustrates that there is always at
least one connected path with purple arrows from the root to some leaf.

We prove the scheduling guarantee stated in Theorem 7 using the following properties of
Gnn. First, we need to show that any node always has at least one outgoing edge in Gnn.

I Lemma 8. In Gnn, v.links is never empty for any node v ∈ VT .

Proof. At the beginning of any execution, v.links is not empty for any v ∈ VT . The set
v.links changes only when there is a (find-predecessor) message at v (see Line 6 of Algorithm 2
and Line 7 and Line 8 of Algorithm 3). During an execution, every time v receives a message,
a node is removed from v.links while a new node is added to v.links. This also covers the
case when at least two messages are received by v at the same time. The node v atomically
processes all these messages in an arbitrary order. Therefore, v.links never gets empty. J

I Lemma 9. Gnn always guarantees that on each edge of H, there is either exactly one link
or exactly one message in transit.

Proof. Initially, either a node points to its parent with an upward link or a node points to its
children with downward links in the Gnn protocol. Consider the edge (u, v) where v ∈ u.links.
Further, consider the first time in which a message is in transit on (u, v). Immediately before
this transition occurs, u must point to v, and there is not any message in transit on the edge.
Therefore, w.r.t. the protocol description, the message must be sent by u to v, and the link
that points from u to v has been removed. Since there is not any link while the message
is in transit, it is not possible to have a second message to be in transit at the same time.
When the message arrives at v, the node v points to u, and the message is removed from the
edge. The next time, if a message will be transited on the edge, then v must have sent it to
u and removed the link that points from v to u. J

I Lemma 10. The directed tree H always remains acyclic during an execution, hence a path
from a node to another node in H is always the direct path.

Proof. The Gnn protocol runs on the directed tree H in which the underlying tree – that
is, T – is fixed, and the directions of links on H are only changed. Therefore, H is acyclic
because the tree is always fixed, and w.r.t. Lemma 9 that shows that it never occurs a state
where on the edge (u, v), u and v point to each other at the same time. J

The following lemma implies that a find-predecessor message always reaches the node of
its predecessor using a direct path constructed by Gnn.

I Lemma 11. Gnn guarantees that there is always at least one direct path in H from any
leaf node u to a leaf node v where v.links = {v}.

ISAAC 2019

53:10 Concurrent Distributed Serving with Mobile Servers

Proof. If the leaf node u points to itself, we are done. Otherwise, w.r.t. Lemma 8 there
must be a path from u to a leaf node v since the tree H is acyclic. This path must be a
direct path w.r.t. Lemma 10. The leaf node v must point to itself w.r.t. Lemma 8. J

Proof of Theorem 7. Using Lemma 11, it remains to show that any message traverses in
finite time a direct path between two leaves. The number of edges on the direct path between
any two leaves of T is upper bounded by the diameter of the tree. Further, any message that
is in transit at edge (u, v) from u to v is delivered reliably at v in a finite time. Therefore,
to show that a request is eventually scheduled in a finite time, it remains to show that a
message will never be at a node for the second time. To obtain a contradiction, assume that
the message µ is the first message that visits a node twice, and the first node visited twice by
µ denoted by v ∈ VT . With respect to Lemma 10, there is never a cycle in H. Therefore, the
edge e = (u, v) must be the first edge that is traversed by µ first from v to u and immediately
from u to v for the second time, and µ must be the first message that traverses an edge twice.
This implies that immediately before u receives µ, the node u points to v, and µ is in transit
on e at the same time. This contradicts Lemma 9. J

3.2.2 Serving Guarantee
I Theorem 12. Gnn is starvation-free. In other words, any scheduled request is eventually
served by some server.

Consider any of k global schedules that produced by Gnn, say πwGnn. Assume that there is
more than one request scheduled in πwGnn. For any two requests ri = (vi, ti) and rj = (vj , tj)
in πwGnn where ri is scheduled immediately before rj , we see e = (ri, rj) as a directed edge
where rj points to ri. This edge is actually simulated by the direct path – by Lemma 11, a
message always finds the node of its predecessor using a direct path on H – between the
leaves vi and vj that is traversed by the message sent from vj to vi. Let FwAlg denote the
graph constructed by the messages of all requests in RwAlg.

I Lemma 13. FwAlg is a directed path towards the head of the schedule, that is, rw0 = rπw
Gnn(0).

Proof. The proof has three parts.
1) Any node of Fw

Alg, except the dummy request, has exactly one outgoing edge:
This is obvious since any node that invokes a request sends exactly one message.

2) Any node in Fw
Alg has at most one incoming edge: For the sake of contradiction,

assume that there is a node contained in FwAlg denoted by r = (v, t) with at least two
incoming edges in FwAlg. This implies that two messages must reach v in H before v
invokes any other request after r. However, when the first message reaches v – if any
other message does not reach v before these two messages – v removes the link that points
to itself and adds a link that points to its parent w.r.t. Line 7 and Line 8 of Algorithm 3.
The second message cannot reach v as long as at least one request is invoked by v after
invoking r. This contradicts our assumption in which two messages reach v before the
time when v invokes another request after invoking r.

3) Fw
Alg is connected: To obtain a contradiction, assume that the graph FwAlg is not

connected. Hence, w.r.t. the first and second parts, we have at least one connected
component with at least two requests in RwAlg that form a cycle, and the connected
component does not include the dummy request in rw0 . Let Rw,cAlg denote the requests in
the connected component Fw,cAlg that forms a cycle. Consider the node z in VT that is the
lowest common ancestor of those leaves of H that invoke the requests in Rw,cAlg. Further,
let the subtree Hw,c of H denote the tree rooted at z. All messages of requests in Rw,cAlg
must traverse inside Hw,c since Fw,cAlg is disconnected with any request in RwAlg \ R

w,c
Alg.

A. Ghodselahi, F. Kuhn, and V. Turau 53:11

Assume that at least one message of requests in Rw,cAlg reaches z. Consider the first
message µ by r that reaches z at time t. If there is not any downward link at z at t,
then µ is forwarded to the parent of z. This is a contradiction with the fact that Fw,cAlg
is disconnected with any request in RwAlg \ R

w,c
Alg. Hence, there must be at least one

downward link at z at t. On the other hand, since µ is the first message of requests
in Rw,cAlg that reaches z, all downward links at z at time t must have been created by
some messages of requests in Hw,c that are not in Rw,cAlg. Note that if a downward link
at z is there since the beginning, then we assume that, w.l.o.g., it has been created by
a “virtual message” sent by the node of the corresponding dummy request. Suppose µ
is forwarded through one of these downward links that was created by the message of
r′ – as mentioned, r′ can be a dummy request – that is in Hw,c but not in Rw,cAlg. The
original downward path from z to the leaf node of r′ can be changed by the message of
a request in Hw,c – can be a request in Rw,cAlg. Thus, either r is scheduled immediately
after some request in Hw,c that is not in Rw,cAlg or some other request in Rw,cAlg. In either
case, we get a contradiction with our assumption in which Fw,cAlg is disconnected with any
request in RwAlg \ R

w,c
Alg.

If there is not any message of a request in Rw,cAlg that can reach z, then there must be
at least two downward links during the execution at z that have been created by some
messages of requests that are not in Rw,cAlg – this holds because if there is at most one
downward link at z, then a message of some request in Rw,cAlg must reach z w.r.t. the
definition of z. However, the existence of at least two downward links at z implies that
Fw,cAlg is not connected. This is true because there are at least two downward paths that
partition the requests in Rw,cAlg into two disjoint components in FwAlg w.r.t. the definition of
z and our assumption in which there is not any message of request in Rw,cAlg that can reach
z. This is a contradiction with our assumption in which Fw,cAlg is a connected component.

The above three parts all altogether show that FwAlg is indeed a directed path that points
towards the dummy request in RwAlg. J

Proof of Theorem 12. Consider any of the k global schedules resulting from Gnn, say πwGnn.
If there is only one request in πwGnn – there must be at least one request, that is the dummy
request rw0 – then we are done. Otherwise, w.r.t. Lemma 13 there is a path of directed
edges such as e = (ri, rj) over the requests in RwAlg. When vi obtains a server, and after
ri is served, vi sends the server to vj for serving rj using an underlying routing scheme.
Consequently, all requests in RwAlg are served. J

Proof of Theorem 1. Theorem 7 and Theorem 12 together prove the claim of the theorem.
J

4 Analysis in a Nutshell

From a technical point of view, we achieve our main result on HSTs. In this section, we
provide an analysis of Gnn on HSTs in a nutshell. The complete analysis, including all
proofs appears in Section 5 of [14]. Our analysis of Gnn for general networks appears in
Section 5.4 of [14]. The lower bound claimed in Theorem 5 is proved in Section 6 of [14].

Let Alg denote a particular distributed DSMS protocol that sends a unique message
from the node of a request to the node of the predecessor request for scheduling the request
(the message can be forwarded by many nodes on the path between the two nodes of the
predecessor and successor requests). Consider a one-shot execution of Alg where requests
are invoked at the same time 0. Let G = (V,E) denote the input graph. Further, let

ISAAC 2019

53:12 Concurrent Distributed Serving with Mobile Servers

B =
(
VB = R, EB =

(R
2
))

be the complete graph, and consider two requests r = (v, 0) and
r′ = (v′, 0) in R where v, v′ ∈ V . Assume that r′ is scheduled as the successor of r by Alg in
the global schedule, and w.r.t. the DSMS problem definition Alg informs v by sending the
(find-predecessor) message µ′ from v′ to v. Therefore, the communication cost for scheduling
r′ equals the latency of µ′. Formally,

cAlg(r, r′) = `Alg(µ′). (3)

Let rsrc(µ′) = r′ denote the request corresponding with µ′. Further, let rdes(µ′) = r denote
the predecessor request r in the global schedule. We see e = (r, r′) as an edge in EB that is
constructed by µ′. Let us add µ(e) and e(µ) to the notation where µ(e) is the message that
constructs the edge e and e(µ) is the edge that is constructed by µ. For instance, here, µ(e)
refers to µ′ and e(µ′) refers to the edge (r, r′).

Representing the solution of ALG as a forest

We observe that any of the k resulting schedules π1
Alg, . . . , π

k
Alg can be seen as a TSP path

that spans all requests in the corresponding schedule as follows (see Lemma 13). The TSP
path F zAlg starts with the dummy request rz0 that is the head of πzAlg, and a request on
the TSP path F zAlg is connected using an edge to its successor in the schedule πzAlg. As
mentioned, the edge is constructed by the message sent by the requesting node to the node
of its predecessor request. Therefore, an edge of any TSP path – that is an edge in EB – is
actually a path on the input graph that is traversed by the corresponding message. For any
F ⊆ FAlg, we define the total communication cost of F as follows.

LAlg(F) :=
∑
e∈F

`Alg
(
µ(e)

)
. (4)

Therefore, the total communication cost of a TSP path equals the sum of latencies of
all messages that construct the TSP path. The k TSP paths represent a forest of B. Let
FAlg be the forest that consists of the k TSP paths F 1

Alg, F
2
Alg, . . . , F

k
Alg constructed by

Alg. We slightly abuse notation and identify a subgraph F of B =
(
R,
(R

2
))

with the set of
edges contained in F . The total communication cost of FALG equals the sum of total
costs of the k TSP paths F 1

Alg, F
2
Alg, . . . , F

k
Alg. For the input graph G = (V,E), we denote

the weight of edge e = (r, r′) ∈ EB by wG(e) := dG(v, v′) where v, v′ ∈ V (recall r = (v, t)
and r′ = (v′, t′)). Note that dG(v, v′) is the weight of the shortest path between v and v′ on
the input graph G. Generally, the total weight of the subgraph F of B w.r.t. the input
graph G equals the sum of weights of all edges in F . Formally,

WG(F) :=
∑
e∈F

wG(e). (5)

I Definition 14 (S-Respecting m-Forest). Let G = (V,E) be a graph and m ≤ |V |. A
forest F of G is called an m-forest if F consists of m trees. Further, let S ⊆ V , |S| ≤ m be
a set of at most m nodes. An m-forest F of G is S-respecting if the nodes in S appear in
different trees of F .

Let RD denote the set of k dummy requests in R. W.r.t. the Definition 14, FAlg is an
RD-respecting spanning k-forest of B =

(
R,
(R

2
))
. From now on, we consider the HST T as

the input graph.

A. Ghodselahi, F. Kuhn, and V. Turau 53:13

Locality-based forest

For any subtree T ′ of T and any subgraph F of B, let F (T ′) denote the subgraph of F that
is induced by those requests contained in F that are also in T ′. Further, let F 1, F 2, . . . , F k

denote the k trees of the spanning k-forest F of B. Let FGrd be any RD-respecting spanning
k-forest of B with the following basic locality properties.

I. [Intra-Component Property] For any subtree T ′ of T and for any w ∈ {1, . . . , k},
the component FwGrd(T ′) is a tree.

II. [Inter-Component Property] For any subtree T ′ of T , suppose that there are at least
two non-empty components F zGrd(T ′) and FwGrd(T ′) where w 6= z and w, z ∈ {1, . . . , k}.
Any of these components includes a dummy request.

We call such a forest a locality-based forest. Any locality-based forest is denoted by FGrd.
The following theorem provides a general version of Theorem 3.

I Theorem 15. Let I denote an instance of DSMS that consists of an HST T where the
communication is asynchronous and a set R of requests that are simultaneously invoked at
leaves of T . The protocol Alg is optimal if the total cost of the resulting forest by Alg is
upper bounded by the total weight of FGrd.

4.1 Optimality of GNN on HSTs
Consider a one-shot execution of Gnn, and suppose that FGnn is the resulting forest when
running Gnn on the given HST T w.r.t. the input sequence R. With respect to Theorem 15,
and the fact that Gnn only sends one unique message for scheduling a request to its
predecessor, it is sufficient to show that the forest FGnn can be transformed into a locality-
based forest such that the total cost of FGnn is upper bounded by the total weight of FGrd.
During an execution of Gnn, the Intra or Inter-Component property can be violated (see
Figure 1). Consider the following situations:
1. A server goes back to a subtree after the time when it leaves the subtree.
2. A request in a subtree of T that initially hosts at least one server is served by a server

that is not initially in the subtree.
3. Two requests in a subtree of T that does not initially host any server, are served by

different servers.
The first situation violates the Intra-Component property. Any of the second and the
third situation violates the Inter-Component property. In the following, we characterize
the Intra-Component and the Inter-Component properties by considering a timeline for the
messages that enter and leave a subtree of T . Consider a message µ that enters the subtree
T ′ of T . Another message can enter T ′ only after some message µ′ has left T ′ after µ entered
T ′ – the arrival times of messages µ and µ′ at the root of T ′ can be the same (cf. Lemma
5.3 and Lemma 5.6 of [14]). Similarly, a message can leave T ′ after µ′ left T ′ only after some
message has entered T ′ after µ′ left T ′. We refer to Lemma 5.6 for more details. Consider a
message µ that enters T ′. The fact that µ enters T ′ implies that a server will leave T ′ for
serving rsrc(µ). Let µ′ denote the first message that leaves T ′ after µ entered T ′. Leaving µ′
from T ′ implies that a server will enter T ′ for serving rsrc(µ′). If rsrc(µ′) is in the same TSP
path of FGnn with rdes(µ), then the server that had served rdes(µ) goes back to T ′ for serving
rsrc(µ′) after it left T ′, and therefore the Intra-Component property is violated. Otherwise,
the Inter-Component property is violated since two requests in T ′ are served by two different
servers in which at least one of the servers is initially outside of T ′. We say Gnn makes
an Inter-Component gap (µ, µ′) on T ′ in the latter case and an Intra-Component gap
(µ, µ′) on T ′ in the former case.

ISAAC 2019

53:14 Concurrent Distributed Serving with Mobile Servers

Transformation

We transform FGnn through closing the gaps that are made by Gnn on all subtrees of T .
A message µ′ can leave from several subtrees of T such that different messages enter the
subtrees before µ′. Therefore, Gnn can make different gaps with the same message µ′ on
this set of subtrees of T . We especially refer to Lemma 5.9 and Lemma 5.11 of [14] for more
details on the gaps of the subtrees of T . We consider the lowest subtree in this set and let
(µ, µ′) be a gap on that. We close the gap (µ, µ′) by removing e(µ′) and by adding the new
edge

(
rdes(µ), rsrc(µ′)

)
. In the example of Figure 1, for instance, the red edges are removed

and the new edges (r1
0, rb) and (rb, rc) are added. When we close the gap (µ, µ′), all other

gaps (µ′′, µ′) that are on higher subtrees are also closed. Therefore, we transform FGnn into
a new forest Fmdf by means of closing all gaps. The following lemma shows that Fmdf is
indeed the locality-based forest.

I Lemma 16. Fmdf is an RD-respecting spanning k-forest of B that satisfies the Intra-
Component and the Inter-Component properties.

It remains to show that the total cost of FGnn is upper bounded by the total weight
of the new forest Fmdf . Formally, we want to show that LGnn(FGnn) ≤ WT (Fmdf). Using
Lemma 11, a message always finds the node of its predecessor using a direct path on T in
any execution of Gnn. Regarding to our communication model described in Section 2.1,
therefore, for every edge e ∈ FGnn we have

`Gnn
(
µ(e)

)
≤ wT (e) (6)

Let (µ, µ′) be the gap on the lowest subtree of T among all subtrees of T with gaps (µ′′, µ′)
for any message µ′′ that makes a gap with µ′. By closing the gap (µ, µ′), we remove
eold :=

(
rsrc(µ′), rdes(µ′)

)
and add the new edge enew :=

(
rsrc(µ′), rdes(µ)

)
. Using (6), we

are immediately done if the latency of µ′ is upper bounded by the weight of enew. However,
the latency of µ′ can be larger than the weight of enew. By contrast, the weight of enew is lower
bounded by the latency of µ (cf. Corollary 5.10 and Lemma 5.15 of [14]). This lower bound
gives us the go-ahead to show that the weight of enew can be seen as an “amortized” upper
bound for `Gnn(µ′). In the following, we provide an overview of our amortized analysis
that appears in Section 5.3.3 of [14]. Let Enew := Fmdf \ FGnn and Eold := FGnn \ Fmdf
be the sets of all edges that are added and removed during the transformation of FGnn,
respectively. Further, we consider a set of edges that provides enough “potential” for our
amortization.

Epot :=
{
e ∈ FGnn :

(
µ(e), µ(e′)

)
is a gap for some e′ ∈ Eold

}
.

For every edge e ∈ Eold, let Epot(e) :=
{
e′ ∈ Epot :

(
µ(e′), µ(e)

)
is a gap

}
. Further, for

every edge e ∈ Epot, let Eold(e) :=
{
e′ ∈ Eold :

(
µ(e), µ(e′)

)
is a gap

}
. In this overview, we

consider the simple case where 1) |Eold(e)| = 1 for every edge e ∈ Epot and |Epot(e)| = 1
for every edge e ∈ Eold. Further, 2) the sets Eold and Epot do not share any edge. The
execution provided by Figure 1 represents an example of the above simple case. We define
the potential function Φ(F) for a subset F of FGnn as follows Φ(F) := WT (F)−LGnn(F).
W.l.o.g., we assume that the edges in Eold are sequentially replaced with the edges in Enew.
Hence, assume that eoldi is replaced with enewi during the i-th replacement. Let also epoti be
the only edge in Epot(eoldi).

I Lemma 17. If |Eold(e)| = 1 for every edge e ∈ Epot, |Epot(e)| = 1 for every edge e ∈ Eold,
and Eold ∩ Epot = ∅, then

wT (eoldi) ≤ wT (enewi) + Φ
(
Epot \

{
epot1 , . . . , epoti−1

})
− Φ

(
Epot \

{
epot1 , . . . , epoti

})
(7)

for every i ≥ 1.

A. Ghodselahi, F. Kuhn, and V. Turau 53:15

Proof. Using the definition of the potential function Φ and the definitions of the total weight
and the total communication cost of a subset of edges in FGnn, we have

Φ
(
Epot \

{
epot1 , . . . , epoti−1

})
− Φ

(
Epot \

{
epot1 , . . . , epoti

})
= wT (epoti)− `Gnn(epoti).

Therefore, we need to show that wT (eoldi) ≤ wT (enewi) + wT (epoti) − `Gnn(epoti). Let the
subtree T ′ of T be the lowest subtree such that

(
µ(epoti), µ(eoldi)

)
is a gap on T ′. This

implies that wT (enewi) = δ(T ′). On the other hand, using Lemma 5.15 of [14] we have
`Gnn(epoti) ≤ δ(T ′) = wT (enewi). It remains to show that wT (eoldi) ≤ wT (epoti). Let T ′′j
be the highest subtree of T such that

(
µ(epoti), µ(eoldi)

)
is a gap on T ′′j and T ′′j is a child

subtree of T ′′. The message µ(eoldi) does not leave T ′′ since Epot(eoldi) =
{
epoti

}
. Hence,

wT (eoldi) = δ(T ′′). On the other hand, the fact that the message µ(epoti) enters T ′′j indicates
that wT (epoti) ≥ δ(T ′′). Consequently, wT (epoti) ≥ wT (eoldi) and we are done. J

When we sum up (7) for all i, we get

WT (Eold) ≤WT (Enew) + Φ
(
Epot

)
. (8)

Using the definition of the potential function Φ and using LGnn(Eold) ≤ WT (Eold) w.r.t
(6), therefore we get LGnn(Epot) + LGnn(Eold) ≤ WT (Enew) + WT (Epot). Hence, we have
LGnn(FGnn) ≤WT (Fmdf) since Fmdf = FGnn\Eold∪Enew and LGnn

(
FGnn\(Eold∪Epot)

)
≤

WT

(
FGnn \ (Eold ∪ Epot)

)
w.r.t (6).

I Lemma 18. The total cost of FGnn is upper bounded by the total weight of Fmdf .

I Theorem 19. The forest FGnn can be transformed into the locality-based forest FGrd such
that the total cot of FGnn is upper bounded by the total weight of FGrd.

5 Further Related Work

Distributed k-server problem

In Section 1, we have seen that the distributed k-server problem is an application of the
DSMS problem. In [8], a general translator that transforms any deterministic global-control
competitive k-server algorithm into a distributed competitive one is provided. This yields
poly(k)-competitive distributed protocols for the line, trees, and the ring synchronous network
topologies. In [8], a lower bound of Ω(max{k, (1/D) · (logn/ log logn)}) on the competitive
ratio for the distributed k-server problem against adaptive online adversaries is also provided
where n is the number of processors. D is the ratio between the cost to move a server and
the cost to transmit a message over the same distance in synchronous networks. [4] and [9]
study OSD on HSTs and lines, respectively. [4] provides an upper bound of O

(
log3 n

)
and

[9] provides an upper bound of O
(
logn

)
on the competitive ratio for OSD where n is the

number of leaves of the input HST as well as the number of nodes of the input line.

Distributed queuing problem and link-reversal-based protocols

A well-known class of protocols has been devised based on link reversals to solve distributed
problems in which the distributed queuing problem is at the core of them [2, 17, 19, 21, 22,
23, 24]. In a distributed link-reversal-based protocol nodes keep a link pointing to neighbors
in the current or future direction of the server. When sending a message over an edge to
request the server, the direction of the link flips. We devise the Gnn protocol that is –
to the best of our knowledge – the first link-reversal-based protocol that navigates more

ISAAC 2019

53:16 Concurrent Distributed Serving with Mobile Servers

than one server. A well-studied link-reversal-based protocol is called Arrow [19, 21, 22].
Several other tree-based distributed queueing protocols that are similar to Arrow have
also been proposed. They operate on fixed trees. The Relay protocol has been introduced
as a distributed transactional memory protocol [24]. It is run on top of a fixed spanning
tree similar to Arrow; however, to more efficiently deal with aborted transactions, it does
not always move the shared object to the node requesting it. Further, in [2], a distributed
directory protocol called Combine has been proposed. Combine like Gnn runs on a fixed
overlay tree, and it is in particular shown in [2] that Combine is starvation-free.

The first paper to study the competitive ratio of concurrent executions of a distributed
queueing protocol is [16]. It shows that in synchronous executions of Arrow on a tree T for
one-shot executions, the total cost of Arrow is within a factor O

(
logm

)
compared to the

optimal queueing cost on where m is the number of requests. This analysis has later been
extended to the general concurrent setting where requests are invoked over time. In [15], it is
shown that in this case, the total cost of Arrow is within a factor O(logD) of the optimal
cost on T where D is the diameter of T . Later, the same bounds have also been proven
for Relay [24]. Typically, these protocols are run on a spanning tree or an overlay tree on
top of an underlying general network topology. In this case, the competitive ratio becomes
O(s · logD), where s is the stretch of the tree. Finally, [13] has shown that when running
Arrow on top of HSTs, a randomized distributed online queueing protocol is obtained with
expected competitive ratio O(logn) against an oblivious adversary even on general n-node
network topologies. The result holds even if the queueing requests are invoked over time and
even if communication is asynchronous. The main technical result of the paper shows that
the competitive ratio of Arrow is constant on HSTs.

Online tracking of mobile users

A similar problem to DSMS is the online mobile user tracking problem [3]. In contrast
with DSMS where a request r results in moving a server to the requesting point, here the
request r can have two types: find request that does not result in moving the mobile user
and move request. A request in DSMS that is invoked by v can be seen as a combination of
a find request that is invoked at v in the mobile user problem and a move request invoked
at the current address of the mobile user. The goal is to minimize the sum of the total
communication cost and the total cost incurred for moving the mobile user. [3] provides
an upper bound of O

(
log2 n

)
on the competitive ratio for the online mobile user problem

for one-shot executions. Further, [1] provides a lower bound of Ω(logn/ log logn) on the
competitive ratio for this problem against an oblivious adversary.

References
1 N. Alon, G. Kalai, M. Ricklin, and L. Stockmeyer. Lower bounds on the competitive ratio for

mobile user tracking and distributed job scheduling. In FOCS, 1992.
2 H. Attiya, V. Gramoli, and A. Milani. A provably starvation-free distributed directory protocol.

In SSS, 2010.
3 B. Awerbuch and D. Peleg. Online tracking of mobile users. Journal of the ACM, 1995.
4 Y. Azar, A. Ganesh, R. Ge, and D. Panigrahi. Online Service with Delay. In STOC, 2017.
5 N. Bansal, N. Buchbinder, A. Madry, and J. S. Naor. A Polylogarithmic-Competitive Algorithm

for the k-Server Problem. In FOCS, 2011.
6 Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In

FOCS, 1996.

A. Ghodselahi, F. Kuhn, and V. Turau 53:17

7 Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data management.
In STOC, 1992.

8 Y. Bartal and A. Rosen. The distributed k-server problem-a competitive distributed translator
for k-server algorithms. In FOCS, 1992.

9 M. Bienkowski, A. Kraska, and P. Schmidt. Online Service with Delay on a Line. In SIROCCO,
2018.

10 M. J. Demmer and M. Herlihy. The arrow distributed directory protocol. In DISC, 1998.
11 J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics

by tree metrics. In STOC, 2003.
12 M. Ghaffari and C. Lenzen. Near-optimal distributed tree embedding. In DISC, 2014.
13 A. Ghodselahi and F. Kuhn. Dynamic Analysis of the Arrow Distributed Directory Protocol

in General Networks. In DISC, 2017.
14 Abdolhamid Ghodselahi, Fabian Kuhn, and Volker Turau. Concurrent Distributed Serving

with Mobile Servers. arXiv, 2019. arXiv:1902.07354.
15 M. Herlihy, F. Kuhn, S. Tirthapura, and R. Wattenhofer. Dynamic analysis of the arrow

distributed protocol. Theoretical Computer Science, 2006.
16 M. Herlihy, S. Tirthapura, and R. Wattenhofer. Competitive concurrent distributed queuing.

In PODC, 2001.
17 P. Khanchandani and R. Wattenhofer. The Arvy Distributed Directory Protocol. In SPAA,

2019.
18 M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms for on-line problems. In

STOC, 1988.
19 M. Naimi and M. Trehel. An Improvement of the logn Distributed Algorithm for Mutual

Exclusion. In ICDCS, 1987.
20 D. Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.
21 K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Transactions on

Computer Systems, 1989.
22 J. L. van de Snepscheut. Fair mutual exclusion on a graph of processes. Distributed Computing,

1987.
23 J. Welch and J. Walter. Link reversal algorithms. Synthesis Lectures on Distributed Computing

Theory, 2011.
24 B. Zhang and B. Ravindran. Dynamic analysis of the relay cache-coherence protocol for

distributed transactional memory. In IPDPS, 2010.

ISAAC 2019

http://arxiv.org/abs/1902.07354

53:18 Concurrent Distributed Serving with Mobile Servers

Table 1 The essential notations used throughout the paper.

Notation Definition Page
n

k

R
ri = (vi, ti)
πz

Alg
rz

0 = (vz, 0)
sz

Rz
Alg

πz
Alg(i)
`Alg(µ)
cAlg(ri, rj)
CAlg(πz

Alg)
CAlg

dG(u, v)
H

µ(v)
B

rsrc(µ)
rdes(µ)
e(µ)
µ(e)
T

FAlg

F z
Alg
LAlg(F)
wG

(
e = (ri, rj)

)
WG(F)
RD

F (T ′)
FGrd

(µ, µ′)
Fmdf

Eold

Enew

Epot

Epot(e)
Eold(e)
Φ(F)

number of pints/nodes/processors
number of servers
input requests
request ri that is invoked by node vi at time ti
z-th schedule as one of the k resulting schedules by Alg
dummy request z as the tail of πz

Alg
z-th server that serves all requests in πz

Alg
request set of πz

Alg
index of the request scheduled at the i-th position of πz

Alg
latency of message µ in an execution of Alg
cost incurred by Alg for scheduling rj as the successor of ri

total cost incurred by Alg for scheduling requests in z-th schedule
total cost incurred by Alg
weight of the shortest path between u and v on the input graph G
directed version of T that is changing during a Gnn execution
find-predecessor message sent by v
complete graph on requests in R
corresponding request with message µ
predecessor request of rsrc(µ)
edge constructed by message µ
message that constructs the edge e
input HST
resulting forest by Alg; also, set of edges of the forest
z-th TSP path of FAlg; also, set of edges of the z-th TSP path
total cost of F such that F ⊆ FAlg

weight of the shortest path between vi and vj on the input graph G
total weight of F w.r.t. measurements on the input graph G
set of k dummy requests; RD ⊆ R
subgraph of F induced by the requests contained in F and T ′

locality-based forest
gap
resulting forest by the transformation of FGnn

set of edges removed throughout the transformation of FGnn

set of edges added throughout the transformation of FGnn{
e ∈ FGnn :

(
µ(e), µ(e′)

)
is a gap for some e′ ∈ Eold

}
subset of Epot filtered out by e ∈ Eold

subset of Eold filtered out by e ∈ Epot

potential of F

2
2
5
5
5
5
5
6
6
6
6
6
6
6
7
7
12
12
12
12
12
12
12
12
12
12
12
12
13
13
13
14
14
14
14
14
14
14

	Introduction
	Our Contribution

	Model, Problem Statement, and Preliminaries
	Communication Model
	Distributed Serving with Mobile Servers (DSMS) Problem
	Preliminaries
	Hierarchically Well-Separated Trees (HSTs)

	The Distributed GNN Protocol
	Description of GNN
	Correctness of GNN
	Scheduling Guarantee
	Serving Guarantee

	Analysis in a Nutshell
	Optimality of GNN on HSTs

	Further Related Work

