55 research outputs found

    Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time - series prediction

    Get PDF
    Collaboration enables weak species to survive in an environment where different species compete for limited resources. Cooperative coevolution (CC) is a nature-inspired optimization method that divides a problem into subcomponents and evolves them while genetically isolating them. Problem decomposition is an important aspect in using CC for neuroevolution. CC employs different problem decomposition methods to decompose the neural network training problem into subcomponents. Different problem decomposition methods have features that are helpful at different stages in the evolutionary process. Adaptation, collaboration, and competition are needed for CC, as multiple subpopulations are used to represent the problem. It is important to add collaboration and competition in CC. This paper presents a competitive CC method for training recurrent neural networks for chaotic time-series prediction. Two different instances of the competitive method are proposed that employs different problem decomposition methods to enforce island-based competition. The results show improvement in the performance of the proposed methods in most cases when compared with standalone CC and other methods from the literature

    Competitive two - island cooperative co - evolution for training feedforward neural networks for pattern classification problems

    Get PDF
    In the application of cooperative coevolution for neuro-evolution, problem decomposition methods rely on architectural properties of the neural network to divide it into subcomponents. During every stage of the evolutionary process, different problem decomposition methods yield unique characteristics that may be useful in an environment that enables solution sharing. In this paper, we implement a two-island competition environment in cooperative coevolution based neuro-evolution for feedforward neural networks for pattern classification problems. In particular the combinations of three problem decomposition methods that are based on the architectural properties that refers to neural level, network level and layer level decomposition. The experimental results show that the performance of the competition method is better than that of the standalone problem decomposition cooperative neuro-evolution methods

    Cooperative neuro - evolution of Elman recurrent networks for tropical cyclone wind - intensity prediction in the South Pacific region

    Get PDF
    Climate change issues are continuously on the rise and the need to build models and software systems for management of natural disasters such as cyclones is increasing. Cyclone wind-intensity prediction looks into efficient models to forecast the wind-intensification in tropical cyclones which can be used as a means of taking precautionary measures. If the wind-intensity is determined with high precision a few hours prior, evacuation and further precautionary measures can take place. Neural networks have become popular as efficient tools for forecasting. Recent work in neuro-evolution of Elman recurrent neural network showed promising performance for benchmark problems. This paper employs Cooperative Coevolution method for training Elman recurrent neural networks for Cyclone wind- intensity prediction in the South Pacific region. The results show very promising performance in terms of prediction using different parameters in time series data reconstruction

    Multi - objective cooperative neuro - evolution of recurrent neural networks for time series prediction

    Get PDF
    Cooperative coevolution is an evolutionary computation method which solves a problem by decomposing it into smaller subcomponents. Multi-objective optimization deals with conflicting objectives and produces multiple optimal solutions instead of a single global optimal solution. In previous work, a multi-objective cooperative co-evolutionary method was introduced for training feedforward neural networks on time series problems. In this paper, the same method is used for training recurrent neural networks. The proposed approach is tested on time series problems in which the different time-lags represent the different objectives. Multiple pre-processed datasets distinguished by their time-lags are used for training and testing. This results in the discovery of a single neural network that can correctly give predictions for data pre-processed using different time-lags. The method is tested on several benchmark time series problems on which it gives a competitive performance in comparison to the methods in the literature

    Enhancing competitive island cooperative neuro - evolution through backpropagation for pattern classification

    Get PDF
    Cooperative coevolution is a promising method for training neural networks which is also known as cooperative neuro-evolution. Cooperative neuro-evolution has been used for pattern classification, time series prediction and global optimisation problems. In the past, competitive island based cooperative coevolution has been proposed that employed different instances of problem decomposition methods for competition. Neuro-evolution has limitations in terms of training time although they are known as global search methods. Backpropagation algorithm employs gradient descent which helps in faster convergence which is needed for neuro-evolution. Backpropagation suffers from premature convergence and its combination with neuro-evolution can help eliminate the weakness of both the approaches. In this paper, we propose a competitive island cooperative neuro-evolutionary method that takes advantage of the strengths of gradient descent and neuro-evolution. We use feedforward neural networks on benchmark pattern classification problems to evaluate the performance of the proposed algorithm. The results show improved performance when compared to related methods

    On the relationship of degree of separability with depth of evolution in decomposition for cooperative coevolution

    Get PDF
    Problem decomposition determines how subcomponents are created that have a vital role in the performance of cooperative coevolution. Cooperative coevolution naturally appeals to fully separable problems that have low interaction amongst subcomponents. The interaction amongst subcomponents is defined by the degree of separability. Typically, in cooperative coevolution, each subcomponent is implemented as a sub-population that is evolved in a round-robin fashion for a specified depth of evolution. This paper examines the relationship between the depth of evolution and degree of separability for different types of global optimisation problems. The results show that the depth of evolution is an important attribute that affects the performance of cooperative coevolution and can be used to ascertain the nature of the problem in terms of the degree of separability

    Neuron - synapse level problem decomposition method for cooperative neuro - evolution of feedforward networks for time series prediction

    Get PDF
    A major concern in cooperative coevolution for neuro-evolution is the appropriate problem decomposition method that takes into account the architectural properties of the neural network. Decomposition to the synapse and neuron level has been proposed in the past that have their own strengths and limitations depending on the application problem. In this paper, a new problem decomposition method that combines neuron and synapse level is proposed for feedfoward networks and applied to time series prediction. The results show that the proposed approach has improved the results in selected benchmark data sets when compared to related methods. It also has promising performance when compared to other computational intelligence methods from the literature

    Competitive island - based cooperative coevolution for efficient optimization of large - scale fully - separable continuous functions

    Get PDF
    In this paper, we investigate the performance of introducing competition in cooperative coevolutionary algorithms to solve large-scale fully-separable continuous optimization problems. It may seem that solving large-scale fully-separable functions is trivial by means of problem decomposition. In principle, due to lack of variable interaction in fully-separable problems, any decomposition is viable. However, the decomposition strategy has shown to have a significant impact on the performance of cooperative coevolution on such functions. Finding an optimal decomposition strategy for solving fully-separable functions is laborious and requires extensive empirical studies. In this paper, we use a competitive two-island cooperative coevolution in which two decomposition strategies compete and collaborate to solve a fully-separable problem. Each problem decomposition has features that may be beneficial at different stages of optimization. Therefore, competition and collaboration of such decomposition strategies may eliminate the need for finding an optimal decomposition. The experimental results in this paper suggest that com- petition and collaboration of suboptimal decomposition strategies of a fully-separable problem can generate better solutions than the standard cooperative coevolution with standalone decomposition strategies. We also show that a decomposition strategy that implements competition against itself can also improve the overall optimization performance

    Multi - island competitive cooperative coevolution for real parameter global optimization

    Get PDF
    Problem decomposition is an important attribute of cooperative coevolution that depends on the nature of the problems in terms of separability which is defined by the level of interaction amongst decision variables. Recent work in cooperative coevolution featured competition and collaboration of problem decomposition methods that was implemented as islands in a method known as competitive island cooperative coevolution (CICC). In this paper, a multi-island competitive cooperative coevolution algorithm (MICCC) is proposed in which several different problem decomposition strategies are given a chance to compete, collaborate and motivate other islands while converging to a common solution. The performance of MICCC is evaluated on eight different benchmark functions and are compared with CICC where only two islands were utilized. The results from the experimental analysis show that competition and collaboration of several different island can yield solutions with a quality better than the two-island competition algorithm (CICC) on most complex multi-modal problems
    • …
    corecore