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Abstract. Cooperative coevolution is a promising method for training
neural networks which is also known as cooperative neuro-evolution. Co-
operative neuro-evolution has been used for pattern classification, time
series prediction and global optimisation problems. In the past, compet-
itive island based cooperative coevolution has been proposed that em-
ployed different instances of problem decomposition methods for com-
petition. Neuro-evolution has limitations in terms of training time al-
though they are known as global search methods. Backpropagation algo-
rithm employs gradient descent which helps in faster convergence which
is needed for neuro-evolution. Backpropagation suffers from premature
convergence and its combination with neuro-evolution can help eliminate
the weakness of both the approaches. In this paper, we propose a compet-
itive island cooperative neuro-evolutionary method that takes advantage
of the strengths of gradient descent and neuro-evolution. We use feedfor-
ward neural networks on benchmark pattern classification problems to
evaluate the performance of the proposed algorithm. The results show
improved performance when compared to related methods.

1 Introduction

Cooperative coevolution (CC) decomposes a problem into subcomponents that
are implemented as sub-populations which cooperatively evolves while mat-
ing is restricted within sub-populations [1]. The process of breaking a problem
down into subcomponents is called problem decomposition. In the case of neuro-
evolution, efficient problem decomposition depends on the network architecture
and nature of the application problem in terms of separability [2]. Cooperative
coevolution has been mostly used for large scale optimisation [3] and evolution of
feedforward and recurrent neural networks in pattern classification and time se-
ries prediction [4, 5, 6, 7]. The use of cooperative coevolution for neuro-evolution
is referred to as cooperative neuro-evolution.

In cooperative neuro-evolution, much attention has been given to problem
decomposition, i.e. how to break the neural network into sub-problems through
the interconnected weights that contain inter-dependencies [2]. The major prob-
lem decomposition methods involve those that fully or partially decompose the
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network, i.e. in full decomposition, the neural network is decomposed into the
lowest level where a single subcomponent represents a weight connection, this
is also called synapse level decomposition [8]. In partial decomposition, the net-
work is decomposed with reference to weight connections linked to each hidden
and output neurons that is also called neuron level decomposition [9, 2]. The
performance of a decomposition method varies on different types of problems,
for instance, synapse level decomposition showed very good results in pole bal-
ancing [8] but have been unsuccessful in pattern classification [9]. Both synapse
and neuron level decomposition have shown competitive performance for time
series problems [5]. There has been much focus on adaptation of the problem
decomposition method during the learning process in order to take advantage
global - local search and inter-dependencies [10, 11, 12]. In competitive island-
based cooperative neuro-evolution (CICN), two or more problem decomposition
methods are implemented as islands that compete and collaborate at different
phases of evolution [4]. The competitive feature gives subcomponents the ability
to compete for resources. There is altruism feature in the algorithm where the
winner island shares its solution with the losing islands so that they can catch
up in the next phase of evolution. The competitive and collaborative features
enables strong solutions to be retained and has been very promising for training
neural networks for time series and pattern classification problems [13, 14]

Neuro-evolution has limitations in terms of training time although they are
known as global search methods. Backpropagation algorithm employs gradient
descent which helps in faster convergence. Backpropagation suffers from prema-
ture convergence and its combination with neuro-evolution can help eliminate
the weaknesses of both the approaches. In this paper, we propose a competi-
tive island cooperative neuro-evolutionary method that takes advantage of the
strengths of gradient descent and neuro-evolution. Integrating backpropagation
in competitive island cooperative coevolution can help in achieving faster conver-
gence to a near global optimum solution. We implement backpropogation as an
island in competitive island-based cooperative neuro-evolution (CICN) and use
it for training feedforward networks for selected pattern classification problems.

The remaining sections of the paper are structured as follows. Section 2
provides the details of the proposed method that features backpropagation in
CICN. Section 3 presents the results with discussion and Section 4 concludes the
paper with discussion on future work.

2 Proposed Method

2.1 Backpropagation in CICN

In Competitive Island Cooperative Neuro-evolution (CICN), two or more decom-
position methods are implemented as islands that compete and provide altruism
where the winning islands share solutions with the losing islands over a period
until termination. In an environment with multiple species, the competitive fea-
ture relates to the ability of the species to outperform each other for possession
of resources [15]. In the proposed method, two standalone methods are used that



include backpropogation and cooperative neuro-evolution that employs neuron
level problem decomposition. The details of each island are given below.

1. Backpropagation algorithm (BP): Standard backpropagation
algorithm where the entire network is used ‘as-is’ without decomposition.

2. Cooperative coevolution with neuron level problem
decomposition (CC-NL): The number of neurons in the hidden and
output layer determine the number of subcomponents [5, 2].
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Fig. 1. The three algorithms employed in this study. These are standalone Backprop-
agation, CC-NL and the 2-Island BCICN algorithm.

The proposed backpropagation competitive island cooperative neuro-evolution
(BCICN) method is given in Algorithm 2. In Stage 1, the sub-populations are
randomly initialised and cooperatively evaluated using neuron level problem de-
composition. After evaluation, the current best individual in the cooperative
neuro-evolution island is copied to the Backpropagation Island. This is to en-
sure that both islands start from the same set of initial solution(s). In Stage 2,
the islands are evolved per the island evolution time and in Stage 3 the best
solutions from both islands are compared and the winner is selected to be trans-
ferred to the losing island in Stage 4 of the algorithm and then the process is
repeated for the next phase of evolution. As presented in previous work [4], the
respective islands need to be given the same number of function evaluations for
each phase in evolution and this is due to the requirement that each island be
evaluated for complete cycles.

2.2 Backpropagation Island

The conventional backpropagation procedure consists of forward pass where in-
formation is propagated forward through neurons using their activation function
that computes weighted sum of incoming weight-connections to the respective
neurons. Once the information is propagated from input, hidden to output later,
the network error is computed and used to calculate gradients for each weight



connected that are then updated. The process is repeated until the overall error
reaches a desired level or when maximum training time in terms of epochs has

been reached [16].

Algorithm 1: Backpropagation Algorithm (BP)

Initialisation:
foreach FEpoch until Max-Epoch do
foreach Training-Sample until Total- Training-Samples do
Forward propagation through network
Backward propagation through network
end
Increment Epoch
end

If the backpropagation island wins a phase of competition, it transfers the
solution to the island that features cooperative neuro-evolution taking into ac-
count that the solution needs to be decomposed as defined by neuron problem
decomposition in order to maintain solution validity. In the case where the Back-
propagation Island loses the competition, the solution from the winner island
will be concatenated by combining the best solutions from all its respective sub-
populations. This individual is then refined using backpropogation and then the
competition continues.

3 Experiments and Results

Table 1. Data set information and neural network configuration

Problem Input Output Min. Train (%) Max. Time Samples
Wisconsin Breast Cancer 9 1 95 15000 699
4-Bit 4 1 1E-3 30000 16
Wine 13 3 95 15000 178
Iris 4 3 95 15000 150
Cleveland Heart Disease 13 1 88 50000 303

In this section, we apply the proposed BCICN to pattern classification prob-
lems. In our previous work, we applied competitive neuro-evolution to pattern
classification and time series prediction [4]. We use the same classification prob-
lems from the UCI Machine Learning Repository [17]. The problems are Cleve-
land Heart Disease, Wisconsin Breast Cancer, Iris and the 4-Bit parity problem.



Algorithm 2: BCICN for Pattern classification

Stage 1: Initialisation:
i. Generate and cooperatively evaluate NL Island
ii. Copy Best Individual from NL Island to BP Island
Stage 2: Evolution:
while FE < Global-Evolution-Time do
while FFE < Island-FEvolution-Time do
foreach Sub-population at NL Island do
foreach Depth of n Generations do
Create new individuals using genetic operators.
Cooperative evaluation.
end

end

end
while FE < Island-FEvolution-Time do

| Execute BP (Algorithm 1) .
end
Stage 3: Competition: Compare NL Island fitness with BP Island fitness.
Stage 4: Collaboration: Inject the best individual from the island with
better fitness into the other island.

if NL Island fitness < BP Island fitness then
| Copy NL Island best individual into the BP Island.

end

else
| Copy BP Island Individual to NL Island
end

end

They have been used in other studies to evaluate performances of new methods
[14, 2]. The details of problems tested are provided in Table 1.

The termination condition for an unsuccessful run is provided in Table 1 as
maximum time (Maz. Time). Each problem is set to have 50 independent runs
where the evaluation time, generalisation performance and success rate is given.
We evaluate the performance on different number of hidden neurons (H) in order
to test robustness and scalability of BCICN. For all the 3 methods employed,
the maximum time or island evolution time remained the same regardless of the
number of islands used (in this case, we used 2 islands).

3.1 Results and Discussion

The results of the experiment are presented in Tables 2 - 3. A comparison is made
between standalone cooperative coevolution with neuron level decomposition
(CC-NL) and the BCICN.
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Fig. 2. Concatenation of the best individuals from the neuron level island and injec-
tion into the backpropagation island. Note the fitness of the concatenated individual
is acquired from the fitness of the last best individual from the neural level island.
When transferring, backpropagation’s solution is decomposed as defined by neuron
level problem decomposition.

The results show that the method that performed best in terms of conver-
gence time for the Iris, Cancer, Wine and Heart problems was the standard
backpropogation algorithm while the worst performance was that of CC-NL.
BCICN obtained faster convergence and outperformed CC-NL as shown in Fig-
ure 3 where results for 10 hidden neurons are compared. The success rate of
BCICN improved in some problems but was the same when the standalone
methods had an average success rate of 100%. BCICN performed best in the
4-Bit problem where once again the worst performance was that of CC-NL. This
is the only problem BCICN method outperformed backpropogation. The success
rate of BCICN improved over backpropogation in all cases given by number of
hidden neurons (H). The focus of this study was to reduce the convergence time
of CC-NL and this was achieved in all the problems tested. The performance
measure was in terms of minimising the function evaluations and improving the
success rates.

This improved performance is due to the collaborative feature employed here
where the two islands shared best solutions throughout the island evolutionary
phases. In the backpropagation island, gradient information is used for weight
update whereas in the cooperative neuron-evolution island, genetic operators are
used. Gradient information features local search and ensures faster convergence
when compared to neuro-evolution that features global search which is slower
in convergence. Backpropagation island does not require network decomposition
and hence does not face the problems of grouping interacting variables. BCICN
provides the balance between global and local search and also features network

Keys for Table 2 and Table 3
Xev = Mean Fitness Evaluations, Xer = Mean Generalisation Performance, (H) = No. Hidden

Neurons, and (sr) = Success Rate
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Table 2.

Performance for the Iris, Cancer and Heart classification problems

Iris Cancer Heart

Method || H||Zev Zer sr |H| zev ZIZer sr ||H| Zev Zer sr
4 || 687 87.50 100l 4 || 246 97.99 100|| 6 || 4034 81.29 96

6 || 684 &87.50 100l 6 || 165 98.16 100|| 8 || 3390 81.17 100

BP 8 || 680 87.50 100| 8 || 145 98.38 100(/10(| 1440 81.28 50
10 || 692 87.50 100([10( 129 98.39 100([12|| 1569 81.53 100

12 || 700 87.50 100|(12| 124 98.42 100|[14| 1451 81.33 100

4 (4356 95.50 100|| 4 ||5562 96.98 94 || 6 || 19097 79.50 90

6 ||5184 94.88 100} 6 ||4519 97.70 100| 8 ||15719 79.88 100

CC-NL || 8 [|5430 96.75 100( 8 |[5227 97.96 100{/10{|35760 80.00 50
10 /{5860 96.00 100([10(|5174 98.08 100 |[12]|| 24445 80.55 100

12 (/6636 96.20 100(/12| 5475 98.31 98 [|14| 21051 79.11 100

4 (/2204 95.50 100|| 4 /(2034 96.71 94| 6 || 8990 80.94 100

6 (/3618 95.00 100} 6 || 1454 97.33 100} 8 ||12580 79.55 100

BCICN || 8 ||4117 94.00 100|| 8 || 1485 97.34 100([10|| 9675 79.95 100
10 {13632 94.75 100(/10{|1140 97.45 100|/12|f 7321 81.53 100

12 (/4369 95.25 100(/12| 1248 97.62 100|/14| 6340 81.02 100

Table 3. Performance for the Wine and 4-Bit classification problems

Wine 4-Bit

Method ||H|| Zev Zer sr ||H|| zev rer  Sr
4 || 262 98.12 100|| 4 {|30010 - 0

6 || 279 98.50 100(| 6 || 13995 100.00 70

BP 8 || 282 98.75 100(| 8 || 9442 100.00 95
10]| 300 99.62 100([10|| 5228 100.00 95

12|| 323 99.75 100({12|| 4795 100.00 95

4 (/6573 94.73 95 || 4 {11151 100.00 100

6 || 7371 92.75 100(| 6 || 6001 100.00 100

CC-NL || 8 ||7293 94.25 100|| 8 || 5772 100.00 100
10]| 8268 94.00 100({10|| 7012 100.00 100
12(|8730 94.12 100({12|| 6318 100.00 100

4 (1959 95.25 100(| 4 || 9324 100.00 100

6 (/1994 94.87 100(| 6 || 4944 100.00 100

BCICN || 8 || 1728 95.50 100|| 8 || 3298 100.00 100
10{| 921 95.12 100({10|| 3067 100.00 100

12]/1023 94.37 100({12|] 3967 100.00 100




decomposition. It approaches the problem as partially separable through neuron
level problem decomposition and non-separable through backpropagation.

In terms of scalability, we look at the mean evaluations at each total number
of hidden neurons used. It is observed that increasing the number of hidden
neurons in the Cancer, 4-Bit and Heart problems decreased the mean evaluations
needed. On the other hand, mean evaluation performance improved when more
hidden neurons were used in the Wine and Iris problems. The BCICN method
showed good scalability in the Wine and Iris problems, but poor scalability in
Cancer, 4-Bit and Heart problems. It can be generalised that that scalability
features depend greatly on the problem nature, which is in terms of the size of
the problem, noise, number of attributes and level of inter-dependencies amongst
them.

Mean Function Evaluations at 10 Hidden Neurons
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Fig. 3. Visualisation of the performance of BCICN with the standalone methods for
10 hidden neurons taken from Table 2 and Table 3.

4 Conclusions and Future Work

This paper proposed an algorithm that incorporates backpropagation in com-
petitive island cooperative neuro-evolution for pattern classification. The results
show that the proposed method outperformed the standalone methods through
faster convergence. The backpropagation algorithm provided neuro-evolution
gradient information that led to faster convergence. This can be very beneficial
in the use of neuro-evolution for big data related problems that require faster
learning. Evolutionary computation methods have limitations in the field of big



data due to time required for convergence. The proposed method can motivate
the development of other hybrid algorithms that speed up evolutionary learning
methods for big data problems.

In future work, the proposed method can be used for training recurrent neu-

ral networks for time series prediction problems such as renewable energy load
forecasting. It can also be used in selected big data problems.
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