
Competitive Island-Based Cooperative
Coevolution for Efficient Optimization of
Large-Scale Fully-Separable Continuous

Functions

Kavitesh K. Bali1 Rohitash Chandra1 Mohammad N. Omidvar2

1 School of Computing Information and Mathematical Sciences,
University of South Pacific, Suva, Fiji.

2 School of Computer Science and IT, RMIT University
Melbourne, Australia.

bali.kavitesh@gmail.com, c.rohitash@gmail.com,

mohammad.omidvar@rmit.edu.au

Abstract. In this paper, we investigate the performance of introducing
competition in cooperative coevolutionary algorithms to solve large-scale
fully-separable continuous optimization problems. It may seem that solv-
ing large-scale fully-separable functions is trivial by means of problem
decomposition. In principle, due to lack of variable interaction in fully-
separable problems, any decomposition is viable. However, the decompo-
sition strategy has shown to have a significant impact on the performance
of cooperative coevolution on such functions. Finding an optimal decom-
position strategy for solving fully-separable functions is laborious and
requires extensive empirical studies. In this paper, we use a competitive
two-island cooperative coevolution in which two decomposition strate-
gies compete and collaborate to solve a fully-separable problem. Each
problem decomposition has features that may be beneficial at different
stages of optimization. Therefore, competition and collaboration of such
decomposition strategies may eliminate the need for finding an optimal
decomposition. The experimental results in this paper suggest that com-
petition and collaboration of suboptimal decomposition strategies of a
fully-separable problem can generate better solutions than the standard
cooperative coevolution with standalone decomposition strategies. We
also show that a decomposition strategy that implements competition
against itself can also improve the overall optimization performance.

1 Introduction

Various meta-heuristic algorithms have been developed for continuous global
function optimization. However, one of the core issues associated with these
techniques is their scalability to higher dimensions [1]. Divide-and-conquer is an
effective technique for solving large-scale complex problems. Cooperative Coevo-
lution (CC) [2] is an explicit means of problem decomposition in the context of
evolutionary algorithms (EAs) [3].



A major challenge in using CC for large-scale optimization is decomposition
of a given problem into smaller sub-problems. Variable interaction [4] is a ma-
jor constraint that governs the decomposition of a problem [5]. It is generally
believed that placement of interacting variables into separate subcomponents de-
grades the optimization performance significantly [6, 2]. For this reason, many
decomposition methods have been proposed for automatic variable interaction
detection [5, 7, 8, 9].

For some classes of problems such as fully-separable functions or overlapping
functions [10], there is no unique decomposition. In principle, for a fully-separable
function, all of the decision variables can be optimized independently, hence any
decomposition is viable. This may suggest that a complete decomposition in
which each variables is placed in a separate subcomponent is the most efficient
decomposition. However, a recent study [11] showed that the performance of
CC is very sensitive to decomposition, even on fully-separable problems. Some
partially separable functions may also contain a relatively high dimensional fully-
separable subcomponent. Poor decomposition strategies of such subcomponents
may hinder the convergence of CC to a high quality solutions [11]. Unfortu-
nately, finding an effective decomposition strategy for fully-separable functions
is a laborious task, which requires extensive experimentation [11]. To alleviate
the need for finding the optimal decomposition, Omidvar et al. used a very sim-
ple reinforcement learning approach to dynamically adapt the decomposition
strategy [11].

Recently, competitive island-based cooperative coevolution (CICC) algorithm
was proposed for global optimization problems that gave promising results [12].
CICC has been originally designed for training recurrent neural networks on
chaotic time series problems [13, 14]. Neuron and synapse level problem decom-
position strategies were implemented as islands that competed and collaborated
with each other. CICC has shown to be a promising approach for solving large
scale fully-separable functions for which there is no unique decomposition strat-
egy [12].

In this paper, we apply CICC algorithm to eliminate the need for finding
an optimal decomposition in the context of fully-separable problems. We spec-
ulate that competition and collaboration of decomposition strategies exhibiting
various features can yield solutions with a quality better than individual decom-
positions used in isolation. In particular, the aim of this paper is to answer the
following questions:

– How effective is the CICC algorithm when applied to large-scale fully-separable
function optimization ?

– Can CICC with two same effective decomposition strategies adapted from [11],
competing against itself improve the overall optimization performance ?

– Can competition and collaboration of two different suboptimal decomposi-
tion strategies yield solutions with a quality better than the near-optimal
standalone decomposition strategies used in isolation ?

The organization of the rest of this paper is as follows. Section 2 describes the
proposed method and its application to large-scale fully-separable continuous



functions. Experimental results and their analyses are provided in Sections 3
and 4. Section 5 concludes the paper and outlines possible future extensions.

2 Competitive Island Cooperative Coevolution for
Fully-Separable Continuous Functions

In this section, we provide details of cooperative coevolution method that fea-
tures competition and collaboration with species, motivated by evolution in na-
ture. In nature, competition in an environment of limited resources is mandatory
for survival. Collaboration enforces interaction and sharing of resources between
the different species having distinct characteristics for adaptation with respect
to challenges such as environmental changes [13, 14]. Interaction and migration
of genetic material or information between the sub-populations can be advanta-
geous in the evolutionary process. Hence, competition and collaboration are vital
aspects of the evolutionary process where different groups of species compete for
resources in the same environment.

Algorithm 1: Competitive Two-Island Cooperative Coevolution algorithm
CICC [12].

Stage 1: Initialization:
i. Cooperatively evaluate Island One
ii. Cooperatively evaluate Island Two
Stage 2: Evolution:
while FE ≤ Global-Evolution-Time do

while FE ≤ Island-Evolution-Time do
foreach Sub-population at Island-One do

foreach Depth of n Generations do
Create new individuals using genetic operators
Cooperative Evaluation of Island One

end

end

end
while FE ≤ Island-Evolution-Time do

foreach Sub-population at Island-Two do
foreach Depth of n Generations do

Create new individuals using genetic operators
Cooperative Evaluation of Island Two

end

end

end
Stage 3: Competition: Compare and mark the island with best fitness.
Stage 4: Collaboration: Inject the best individual from the island with better fitness into the other
island.
if ErrorIslandOne ≤ ErrorIslandTwo then

Inject Island One’s best individual into Island Two.
end
else

Inject Island Two’s best individual into Island One.
end

end

In the proposed competitive algorithm, two problem decomposition strategies
are implemented as separate islands and evolved by an independent evolutionary
algorithm. These islands enforce competition by comparing their solutions after
a fixed time (fitness evaluations), and exchange the best solution between the
islands[13, 14, 12]. Interaction between the two islands occur after separate evo-
lutionary processes are executed in phases that are defined by fitness evaluations



or generations. After a phase of evolution is completed, the algorithm migrates
feasible solutions from the winner island into the others. The proposed CICC
method for fully-separable problems is presented in Algorithm 1 where the key
aspects are initialization, evolution, competition and collaboration.

For this paper, we focus on a two-island competition algorithm [14, 12]. This
algorithm can be extended to more islands in further studies.

2.1 Initialization

In CICC, a problem decomposition strategy is implemented as an island. To
enforce an unbiased competition, we ensure that both islands (Island One and
Island Two) begin search with the same genetic materials in the sub-populations
and cooperatively evolve them in isolation.

Initially, all the sub-populations of Island One are initialized with random-
real number values from a domain specified in Table 1. These real values (from
Island One) are copied into the sub-populations of Island Two. A problem de-
composition (configuration) for an island can either have same sized (uniform)
or varied sized (non-uniform) subcomponents. Since we are utilizing the prob-
lem decomposition strategies from [11], we employ uniform subcomponent sizes
for this study. The highest level of decomposition for an island would have one
subcomponent for each variable. A study has concluded that such extreme de-
compositions do not quite perform well as the rest of the effective decomposition
configurations and they should be avoided [11]. In CICC, the number of fitness
evaluations depend on the number of sub-populations used in the island. There-
fore, an island with higher number of subcomponents will acquire more fitness
evaluations for each cycle. We would like to assign each island with the similar
time for evolution and encourage a fair competition. Since each island is simulta-
neously evolved for complete cycles, the number of fitness evaluations cannot be
exactly the same for each island if they are defined by different problem decom-
position strategies. Therefore, different islands adapt to different times (fitness
evaluations) because the search difficulties along different dimensions of each
island are different [12]. The islands compete and collaborate with each other to
optimize a problem until the termination criteria is reached.

2.2 Coevolution in CICC

Once both islands have been initialized with the same search space, they are
evolved simultaneously for a predefined time in the usual round robin fashion
of the cooperative coevolution algorithm. According to Algorithm 1, this pre-
defined time is termed as island-evolution time. The island evolution time is
established by the number of cycles that makes the required number of fitness
evaluations for each of the two islands. Basically, a cycle is complete when all
the sub-populations of an island have been cooperatively evolved for n number
of generations in the conventional round-robin fashion of the CC algorithm. Co-
operative evaluation of individuals in the respective sub-populations is done by



concatenating the chosen individual from a given sub-population with the best
individuals from the rest of the sub-populations [2].

2.3 Competition and Collaboration

In Stage 3 of the CICC algorithm, a simple yet efficient competition strategy is
implemented. After evolution of each of the islands, through a ranking process,
the algorithm marks the island with the best fitness. The island producing the
minimum fitness error is the winner island and the individual with the best
fitness is copied to the other islands. The migration of the best feasible solution
is able to assist and motivate the other islands to compete fairly in the next
phase of competition.

As an island wins, the best individuals from each of the subcomponents need
to be carefully concatenated into a context vector [15]. The best solutions are
then split from the context vector and are then injected into one of the runner-
up island(s). The algorithm must be implemented in such a way that it ensures
that the solutions are transferred without losing any genotype to phenotype
mapping [13, 14].

In the conventional CC algorithm, each sub-population contains individuals
that each have a unique fitness, which are cooperatively evaluated with the best
solutions from the rest of the subcomponents. Taking that into consideration,
there can be many distinct fitness values for the best solutions in each of the
different sub-populations. Since the fitness of the best solution from the last sub-
population carries a stronger solution, this fitness value is transferred (migrated)
and is used to override the fitness of the best solutions of all the sub-populations
of the runner-up islands.

3 Simulation and Analysis

In this section, we compare the performance of the competition enforced algo-
rithm, CICC against the standalone CC algorithm for fully-separable problems.

3.1 Problem Decomposition Strategies

Two sets of experiments are conducted in this paper. Firstly, the best effective
static decomposition strategies (near optimal) are selected from [11] and imple-
mented as a potential island. The best effective decomposition strategies that
have been identified empirically through previous studies are shown in Table 1.
In this scenario, the two islands of CICC algorithm are constructed with the
same problem decomposition strategies (best) which compete and collaborate to
optimize a fully-separable function. It should be noted that the problem decom-
position strategy for each island does not need to be the same as highlighted
in [13, 12]. In the next set of experiments, we extend the study by competing
two different problem decomposition strategies.



3.2 Benchmark Problems and Parameter Settings

The experimental results in this paper are based on eight fully-separable func-
tions taken from previous work [11] and listed in Table 1. Functions f1 and
f2 were selected from De Jong suite [16], and the remaining are commonly
used functions for benchmarking continuous optimization algorithms defined in
[17, 18, 19]. Functions f1, f3 and f7 are uni-modal and the remaining five func-
tions are multi-modal [11]. The total number of fitness evolutions is set to 3×106.
The number of individuals in each of the respective sub-populations are fixed at
100.

The generalized generation gap with parent-centric crossover evolutionary
algorithm (G3-PCX) [20] is used as the sub-population optimization algorithm.
We use a pool size of 2 parents and 2 offspring as presented in [20]. In this gen-
eralized generation gap model selection criteria, several individuals are replaced
at every generation and only those that are replaced are evaluated.

Table 1. A list of fully-separable and scalable benchmark problems.

Function Equation Domain Optimum Best
Decomp. [11]

Sphere Function f1(x) =

n∑
i=1

x
2
i [−100, 100]n x∗ = 0, f1(x∗) = 0 10× 100

Quadratic Funciton f2(x) =

n∑
i=1

ix
4
i +N (0, 1) [−100, 100]n x∗ = 0, f2(x∗) = 0 5× 200

Elliptic Function f3(x) =

n∑
i=1

10
6 i−1
n−1 x

2
i [−100, 100]n x∗ = 0, f3(x∗) = 0 10× 100

Rastrigin’s Function f4(x) =
n∑

i=1

[
x
2
i − 10 cos(2πxi) + 10

] [−5, 5]n x∗ = 0, f4(x∗) = 0 500× 2

Ackley’s Function f5(x) =

−20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2
i

−
exp

(
1

n

n∑
i=1

cos(2πxi)

)
+20+

e

[−32, 32]n x∗ = 0, f5(x∗) = 0 10× 100

Schwefel’s Function f6(x) = 418.9829n −
n∑

i=1

xi sin(
√
|xi|)

[−512, 512]n x∗ = 1, f6(x∗) = 0 500× 2

Different Powers f7(x) =
n∑

i=1

|xi|i+1
[−1, 1]n x∗ = 0, f7(x∗) = 0 10× 100

Styblinski-Tang f8(x) =

1

2

n∑
i=1

(x
4
i − 16x

2
i + 5xi) +

38.16599n

[−5, 5]n x∗ = −2.903534× 1 500× 2

f8(x∗) = 0



Table 2. Competition of same problem decomposition strategies against itself (CICC)
compared with standalone CC with standalone decomposition strategies.

Functions Decomposition Stats. CC CICC

f1 10× 100
Median 4.21e-23 3.76e-26
Mean 4.23e-23 8.29e-26
StDev 9.17e-24 2.69e-26

f2 5× 200
Median 7.77e+03 1.39e-09
Mean 4.43e+08 1.60e-09
StDev 3.53e+03 2.73e-03

f3 10× 100
Median 2.53e-18 5.50e-20
Mean 2.46e-18 5.45e-20
StDev 3.36e-19 4.06e-20

f4 500× 2
Median 8.74e+02 1.40e+02
Mean 8.66e+02 1.45e+02
StDev 3.00e+01 2.02e+01

f5 10× 100
Median 2.86e+00 1.26e+00
Mean 2.78e+00 1.30e+00
StDev 1.11e-01 2.40e-01

f6 500× 2
Median 2.26e+04 1.30e+04
Mean 3.48e+04 1.35e+04
StDev 8.69e+02 6.17e+02

f7 10× 100
Median 6.61e-01 1.00e-09
Mean 7.79e-01 4.00e-04
StDev 1.06e-01 1.01e-04

f8 500× 2
Median 1.20e+01 0.00+e00
Mean 1.65e+02 0.00+e00
StDev 1.55e+02 0.00+e00

4 Results and Analyses

4.1 Competition Between Same Problem Decomposition Strategies

In this section, we evaluate if CICC with the best decomposition strategy com-
peting against itself can improve the performance given by the best problem
decomposition strategy used in isolation. The results are given in Table 2 that
shows the median, mean and the standard deviation of the final results obtained
by 25 independent runs. In this scenario, CICC implements the best problem
decomposition strategies for each of the functions determined in [11]. This es-
sentially means that the two islands are constructed having the same problem
decomposition that compete with each other. The results of the standalone CC
with the same problem decomposition strategy is also presented for compari-
son. Generally, these results in Table 2 show that the proposed CICC algorithm
outperforms the standalone CC in each of the eight fully separable functions f1

- f8. It can be noted that CICC performed fairly well on the three unimodal
functions (f1,f3,f7) recording optimal solutions within the max 3 × 106 fitness
evaluations. Additionally, the CICC algorithm performed considerably well on
the multi-modal Quadratic function- f2 than the standalone CC counterpart.
CICC recorded better solutions for f4, f5, f6 and outperformed its respective



Table 3. Competition results of two different problem decomposition strategies (CICC)
compared to individual decompositions used in isolation (standalone CC)

Standard CC

Functions Stats. 100× 10 50× 20 CICC

f1

Median 2.02e-47 1.56e-51 1.79e-79
Mean 1.02e-47 3.21e-51 1.08e-79
StDev 1.38e-47 3.94e-51 6.04e-80

f2

Median 5.40e-02 5.42e-03 1.96e-09
Mean 3.68e-01 1.81e-03 3.11e-10
StDev 5.50e-01 2.89e-03 9.83e-10

f3

Median 1.57e-45 3.74e-49 1.26e-78
Mean 9.25e-46 1.37e-49 9.78e-78
StDev 4.05e-46 1.19e-49 1.42e-77

f4

Median 3.53e+03 3.70e+03 3.47e+03
Mean 3.50e+03 3.85e+03 3.86e+03
StDev 1.39e+02 2.23e+02 5.39e+01

f5

Median 9.64e-02 9.78e-01 4.44e-16
Mean 1.60e+00 1.37e+00 4.44e-16
StDev 1.20e+00 7.52e-01 1.00e-16

f6

Median 1.19e+05 1.17e+05 1.06e+05
Mean 1.26e+05 1.14e+05 1.06e+05
StDev 3.27e+03 3.97e+03 2.37e+03

f7

Median 5.36e-03 1.60e+00 3.28e-04
Mean 1.38e-03 1.48e+00 4.00e-04
StDev 7.75e-05 2.93e-01 1.00e-04

f8

Median 4.82e+03 5.80e+03 4.11e+03
Mean 4.12e+03 5.78e+03 3.75e+03
StDev 1.89e+02 2.06e+02 1.08e+02

CC configurations. For the Styblinski-Tang function - f8, CICC performed sub-
stantially better.

The competition of the two islands with the same decomposition scheme
does not follow the motivation of the original CICC method [13, 12], where
only different decomposition strategies were competing in order to exchange
their unique features during evolution. In the case of competition using the
same decomposition strategies, it can be noted that each island has features or
solutions at different landscape of the problem that may be beneficial to the
other island which may be struggling in a local optimum. These features are
acquired through diversity and execution of genetic operators in the different
islands that evolve in isolation for short span of time until there is comparison
and then collaboration.

4.2 Competition Between Different Problem Decomposition
Strategies

To further evaluate the efficiency of the CICC framework, we run an experiment
with a set of two different problem decomposition strategies (100 × 10) and
(50 × 20) that competes with each other to optimize a function. The results are



presented in Table 3. Once again, it is clear that using CICC to compete two
different sets of problem decomposition strategies generates better solutions than
the standard cooperative coevolution with standalone decompositions strategies.
CICC performed better on the fully-separable functions f1 - f8. It generated
near-optimum solutions for the uni-modal functions f1 and f3 and performed
significantly better than the standalone CC for f7. Multi-modal functions such
as f5 and f2 were well optimized by CICC. The CICC algorithm managed to
outperform the standalone CC implementations of f4, f6, f8 and generated better
quality solutions for these multi-modal functions.

In summary, it can be observed that CICC has performed well without hav-
ing the need to find an optimal decomposition strategy to optimize large-scale
fully-separable functions. It has generated solutions of equal quality and at times
better than those found through optimal decomposition schemes. If a competi-
tion algorithm, competing problem decomposition strategies can perform better,
then we do not have to empirically find the best decomposition strategy in the
first instance. This can help save time and computational resources.

5 Conclusions and Future Work

In this paper, we have applied an island-based competitive cooperative coevolu-
tion algorithm to large-scale fully-separable continuous optimization problems.
The results show that CICC can significantly improve the performance when
compared to optimal problem decomposition strategies of standalone coopera-
tive coevolution method. We found that competition and collaboration of two
different suboptimal problem decomposition strategies of a fully-separable prob-
lem can also generate better solutions than the standard cooperative coevolution
with standalone decomposition strategies.

Furthermore, we have shown that if competition of problem decomposition
strategies can perform equally better than that of the best performing decom-
position, then there is not a need to empirically find the best decomposition
strategy. In other words, CICC helps us to eliminate the need for finding the op-
timal decomposition strategy and yet we can have solutions with similar quality.

In future work, CICC can be extended to a wide range of problems such
as partially-separable functions as well as the recently introduced overlapping
functions [10]. Further improvement of the results can also be achieved by im-
plementing a multi-island CICC algorithm where more than two islands are
considered.
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