211 research outputs found

    Non-commutative Stone duality: inverse semigroups, topological groupoids and C*-algebras

    Full text link
    We study a non-commutative generalization of Stone duality that connects a class of inverse semigroups, called Boolean inverse \wedge-semigroups, with a class of topological groupoids, called Hausdorff Boolean groupoids. Much of the paper is given over to showing that Boolean inverse \wedge-semigroups arise as completions of inverse semigroups we call pre-Boolean. An inverse \wedge-semigroup is pre-Boolean if and only if every tight filter is an ultrafilter, where the definition of a tight filter is obtained by combining work of both Exel and Lenz. A simple necessary condition for a semigroup to be pre-Boolean is derived and a variety of examples of inverse semigroups are shown to satisfy it. Thus the polycyclic inverse monoids, and certain Rees matrix semigroups over the polycyclics, are pre-Boolean and it is proved that the groups of units of their completions are precisely the Thompson-Higman groups Gn,rG_{n,r}. The inverse semigroups arising from suitable directed graphs are also pre-Boolean and the topological groupoids arising from these graph inverse semigroups under our non-commutative Stone duality are the groupoids that arise from the Cuntz-Krieger CC^{\ast}-algebras.Comment: The presentation has been sharpened up and some minor errors correcte

    The Booleanization of an inverse semigroup

    Full text link
    We prove that the forgetful functor from the category of Boolean inverse semigroups to inverse semigroups with zero has a left adjoint. This left adjoint is what we term the `Booleanization'. We establish the exact connection between the Booleanization of an inverse semigroup and Paterson's universal groupoid of the inverse semigroup and we explicitly compute the Booleanization of the polycyclic inverse monoid PnP_{n} and demonstrate its affiliation with the Cuntz-Toeplitz algebra.Comment: This is an updated version of the previous paper. Typos where found have been corrected and a new section added that shows how to construct the Booleanization directly from an arbitrary inverse semigroup with zero (without having to use its distributive completion

    The universal Boolean inverse semigroup presented by the abstract Cuntz–Krieger relations

    Get PDF

    Codes, orderings, and partial words

    Get PDF
    Codes play an important role in the study of the combinatorics of words. In this paper, we introduce pcodes that play a role in the study of combinatorics ofpartial words. Partial words are strings over a finite alphabet that may contain a number of “do not know” symbols. Pcodes are defined in terms of the compatibility relation that considers two strings over the same alphabet that are equal except for a number of insertions and/or deletions of symbols. We describe various ways of defining and analyzing pcodes. In particular, many pcodes can be obtained as antichains with respect to certain partial orderings. Using a technique related to dominoes, we show that the pcode property is decidable

    Relations on words

    Full text link
    In the first part of this survey, we present classical notions arising in combinatorics on words: growth function of a language, complexity function of an infinite word, pattern avoidance, periodicity and uniform recurrence. Our presentation tries to set up a unified framework with respect to a given binary relation. In the second part, we mainly focus on abelian equivalence, kk-abelian equivalence, combinatorial coefficients and associated relations, Parikh matrices and MM-equivalence. In particular, some new refinements of abelian equivalence are introduced

    AF inverse monoids and the structure of countable MV-algebras

    Get PDF
    corecore