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Abstract: 

Codes play an important role in the study of the combinatorics of words. In this paper, we introduce pcodes that 

play a role in the study of combinatorics ofpartial words. Partial words are strings over a finite alphabet that 

may contain a number of “do not know” symbols. Pcodes are defined in terms of the compatibility relation that 

considers two strings over the same alphabet that are equal except for a number of insertions and/or deletions of 

symbols. We describe various ways of defining and analyzing pcodes. In particular, many pcodes can be 

obtained as antichains with respect to certain partial orderings. Using a technique related to dominoes, we show 

that the pcode property is decidable.  
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Article: 

1. Introduction 

The theory of codes has been widely developed in connection with combinatorics on words [2]. In this paper, 

we introduce pcodes in connection with combinatorics on partial words. Pcodes are defined in terms of the 

compatibility relation which considers two sequences over the same alphabet that are equal except for a number 

of insertions and/or deletions. We describe various ways of defining and analyzing pcodes. In particular, many 

pcodes can be obtained as antichains with respect to some special partial orderings. We show that the pcode 

property can be decided for finite sets of partial words. The decidability result for pcodes is an adaptation of the 

domino graph technique of Head and Weber [13]. 

 

A motivation for considering partial words comes from the study of biological sequences such as DNA and 

protein that play a central role in molecular biology. DNA sequences can be viewed as long (a few million to a 

few billion letters) strings in the 4-letter alphabet of nucleotides: a (for adenine), c (for cytosine), g (for 

guanine), and t (for thymine), while protein sequences can be viewed as short (a few hundred letters) strings in 

the 20-letter alphabet of amino acids. Proteins are made by fragments of DNA called genes that are roughly 

three times longer than the corresponding proteins. This is because every triplet of nucleotides in the DNA 

alphabet codes one letter in the protein alphabet of amino acids. 

 

Sequence comparison is one of the most important primitive operation in molecular biology, serving as a basis 

for many other, more complex, manipulations. Alignment of two sequences is a way of placing one sequence 

above the other in order to make clear the correspondence between similar letters or substrings from the 

sequences. Alignment of two genes (or two proteins) can be viewed as a construction of two partial words that 

are said to be compatible. As an example, consider the sequences gacggattag and gatcggtag. We cannot help 

but notice that they actually look very much alike, a fact that becomes more obvious when we align them one 

above the other as follows: 
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The second sequence is obtained from the first by inserting a t and by deleting an a and a t. Observe that we had 

to introduce gaps or holes (indicated by ◊’s) in the sequences to let similar nucleotides align perfectly. 

 

Another important operation in molecular biology where partial words play a role is DNA sequencing. DNA 

sequencing is the process of obtaining from a DNA molecule its base sequence. The computational task 

involved in DNA sequencing is called fragment assembly of DNA. The motivation for this problem comes from 

the fact that with current technology it is impossible to sequence directly contiguous stretches of more than a 

few hundred bases. On the other hand, there is technology to cut random pieces of a long DNA molecule and to 

produce enough copies of the pieces to sequence. Thus, a typical approach to sequencing long DNA molecules 

is to sample and then sequence fragments from them. However, this leaves us with the problem of assembling 

the pieces. As an example, suppose the input is composed of the four sequences accgt, cgtgc, ttac, taccgt and 

we know that the answer has approximately 10 bases. One possible way to assemble this set is 

 

 
 

which gives us ttaccgtgc. This answer has 9 bases, which is close to the target length of 10. The only guidance 

to assembly, apart from the approximate size of the target, are the overlaps between fragments. By overlap we 

mean the fact that sometimes the end part of a fragment is similar to the beginning of another, as with the first 

and second sequences above. Again we had to introduce gaps or holes (indicated by ◊’s) in the sequences to let 

similar bases before and after the ◊’s align perfectly. Real problem instances however are very large. Apart 

from this fact, several other complications exist that make the problem much harder than the small example 

above. The main factors that add to the complexity of the problem are errors, regularities such as periodicities 

and repetitions, and lack of coverage [17]. Research in combinatorics of partial words was initiated by Berstel 

and Boasson [1]. Other works include [4–9]. 

 

This paper studies codes, orderings, and partial words. In Section 2, notation and basic notions on words and 

partial words are discussed. In particular, the roles of compatibility and commutativity are investigated. In 

Section 3, some special basic binary relations are defined on partial words including the prefix, suffix, 

commutative, and border relations. There, the role of primitivity of partial words is also discussed. In Section 4, 

pcodes are introduced and their properties concerning binary relations are proved. In Section 5, the class of 

antichains with respect to the prefix and suffix partial orderings of partial words is characterized. In Section 6, 

the border partial ordering is discussed. Section 7 contains results related to the commutative partial ordering on 

partial words. Moreover, in Section 8 we show that the pcode property is decidable. Finally, Section 9 contains 

a few concluding remarks. 

 

2. Preliminaries 

In this section, we recall some basic notions on words and partial words. 

 

Let A be a nonempty finite set of symbols called an alphabet. Symbols in A are called letters and any finite 

string over A is called a word over A. The empty word, that is the word containing no letter, is denoted by ε. The 

set of all words over A is denoted by A∗. It is a monoid under the associative operation of concatenation or 

product of words, and ε serves as identity. We call A
+
 = A∗\{ε} the free semigroup generated by A and A∗ the 

free monoid generated by A. 

 

A word of length n over A can be defined by a total function u: {0,..., n − 1}  → A and is usually represented as 

u = a0a1...an−1 with ai ∈ A. A partial word of length n over A is a partial function u: {0,..., n − 1} → A. For 0 ≤ i 

< n, if u (i) is defined, then we say that i belongs to the domain of u (denoted by i ∈ D(u)), otherwise we say 

that i belongs to the set of holes of u (denoted by i ∈ H(u)). A word over A is a partial word over A with an 



empty set of holes (we sometimes refer to words asfull words). For any partial word u over A, |u| denotes its 

length. In particular, |ε| = 0. We denote by W0 the set A
*
, and for every integer i ≥ 1, by Wi the set of partial 

words over A with at most i holes. We put W = ∪i≥0 Wi, the set of all partial words over A with an arbitrary 

number of holes. 

 

If u is a partial word of length n over A, then the companion of u (denoted by u◊) is the total function u◊ : {0,..., 

n − 1} → A ∪ {◊} defined by 

 

       
          ∈        

          
  

 

The symbol ◊ ∉ A is viewed as a “do not know” symbol. The word u◊ = abb◊b◊cb is the companion of the 

partial word u of length 8 where D(u) = {0, 1, 2, 4, 6, 7} and H(u) = {3, 5}. The bijectivity of the map u ↦ u◊ 

allows us to define for partial words concepts such as concatenation and powers in a trivial way. The set W is a 

monoid under the concatenation (ε serves as identity). For a word u, the powers of u are defined inductively by 

u
0
 = ε and, for any n ≥ 1, u

n
 = uu

n−1
. For a subset X of W, we denote by X

*
 the submonoid of W generated by X. 

It consists of all partial words which are concatenations of elements of X. 

 

A partial word u is a factor of the partial word v if there exist partial words x, y such that v = xuy. The factor u is 

called proper if u ≠ v. The partial word u is a prefix (respectively, suffix) of v if x = ε (respectively, y = ε). For a 

subset X of W, we denote by F(X) the set of factors of elements in X. More specifically, 

 

F(X) = {u | u ∈ W and there exist x, y ∈ W such that xuy ∈ X}. 

 

A period of a partial word u over A is a positive integer p such that u (i) = u (j) whenever i, j ∈ D (u) and i ≡ j 

mod p. In such a case, we call u p-periodic. 

 

For convenience in the sequel, we consider a partial word over A as a word over the enlarged alphabet A ∪  {◊}, 

where the additional symbol ◊ plays a special role. Thus, we say for instance “the partial word ◊ab◊b” instead 

of “the partial word with companion ◊ab◊b”. 

 

2. 1. Compatibility 

In this section, we discuss compatibility on partial words. 

 

If u and v are two partial words of equal length, then u is said to be contained in v, denoted by u ⊂ v, if all 

elements in D(u) are in D(v) and u(i) = v(i) for all i ∈ D(u). We sometimes write u ⊏ v if u ⊂ v but u ≠ v. The 

order u ⊂ v on partial words is obtained when we let ◊ ≺ a and a ≺ a for all a ∈ A. The partial words u and v are 

called compatible, denoted by u ↑ v, if there exists a partial word w such that u ⊂ w and v ⊂ w. We denote by u 

∨ v the least upper bound of u and v (in other words, u ⊂ u ∨ v and v ⊂ u ∨ v and D(u ∨ v) = D(u) ∪ D(v)). As 

an example, u = aba◊◊a and v = a◊◊b◊a are two partial words that are compatible and u ∨ v = abab◊a. For a 

subset X of W, we denote by C(X) the set of all partial words compatible with elements ofX. More specifically, 

 

C(X) = {u | u ∈ W and there exists v ∈ X such that u ↑ v}. 

 

The following rules are useful for computing with partial words.  

Multiplication: If u ↑  v and x ↑ y, then ux ↑ vy. 

Simplification: If ux ↑ vy and |u| = |v|, then u ↑ v and x ↑ y.  

Weakening: If u ↑ v and w ⊂ u, then w ↑ v. 

 

Lemma 1 (Berstel and Boasson [1]). Let u, v, x, y ∈ W be such that ux ↑ vy. 

 If |u| > |v|, then there exist w, z ∈ W such that u = wz, v ↑ w, and y ↑ zx. 



 If |u| <, |v|, then there exist w, z ∈ W such that v = wz, u ↑ w, and x ↑ zy. 

 

2.2. Commutativity 

In this section, we discuss commutativity on partial words. 

 

Lemma 2 (Shyr [18]). Let u, v ∈ W0\{ε}. If uv = vu, then there exists w ∈ W0 such that u = w
m
 and v = w

n
 for 

some integers m, n. 

 

We now describe an extension of Lemma 2. 

 

Definition 1 (Blanchet-Sadri and Luhmann [9]). Let k, be positive integers satisfying k ≤ l For 0 ≤ i < k + l we 

define the sequence of i relative to k, as seqk,l (i) = (i0, i1, i2, .. . ,in, in+1) where 

 

 n = ((k + l)/gcd(k,l)) − 1, 

 i0 = i = in+1, 

 For 1 ≤ j ≤ n, ij ≠ i, 

 For 1 ≤  j ≤ n + 1, ij is defined as 

 

    
                    

                
  

 
For example, if k = 4 and l = 10, then seq4,10(0) = (0, 4, 8, 12, 2, 6, 10, 0). 

Definition 2 (Blanchet-Sadri and Luhmann [9]). Let k, be positive integers satisfying k ≤ l, and let w ∈ W be of 

length k + l. We say that w is {k, l}-special if there exists 0 ≤ i < k such that seqk,l (i) = (i0, i1, i2,..., in, in+1) 

satisfies one of the following conditions: 

 seqk,l (i) contains two consecutive positions that are holes of w. 

 seqk,l (i) contains two positions that are holes of w while w◊(i0)w◊(i1)w◊(i2)...w◊(in+1) is not 1-periodic. 

 

For example, if k = 4 and l = 10, then 

 The partial word u = ab◊aab◊aabaa◊◊ is {4, 10}-special since seq4,10(0) contains the consecutive 

positions 12 and 2 which are in H (u) = {2, 6, 12, 13}. 

 The partial word v = a◊baab◊aabaa◊◊ is {4, 10}-special since seq4,10(0) contains the positions 6 and 12 

which are in H(v) = {1, 6, 12, 13} while  

 

v◊(0)v◊(4)v◊(8)v◊(12)v◊(2)v◊(6)v◊(10)v◊(0) = aaa◊b◊aa  

 

is not 1-periodic. 

 The partial word w = ◊babab◊babab◊b is not {4, 10}-special.  

 

The following lemmas were used to prove Theorem 1 that follows. 

 

Lemma 3 (Blanchet-Sadri and Luhmann [9]). Let x, y ∈ W0\{ε}, and let w ∈ W be non {|x|, |y|}-special. If w ⊂ 

xy and w ⊂ yx, then xy = yx. 

 

The special case of Lemma 3 when w has only one hole was proved in [1]. In this case, w is by definition non 

{|x |, |y|}-special. 

 

Lemma 4 (Blanchet-Sadri and Luhmann [9]). Let u, v ∈ W\{ε}, x, y ∈ W0 be such that u ⊂ x and v ⊂ y. If uv is 

non {|u|, |v|}-special and vu ⊂ xy, then uv ⊂ yx. 

 



Theorem 1 (Blanchet-Sadri and Luhmann [9]). Let u, v ∈ W\{ε} be such that uv is non {|u|, |v|}-special. If uv ↑ 

vu, then there exists w ∈ W0 such that u ⊂ w
m
 and v ⊂ w

n
 for some integers m, n. 

 

The special case of Theorem 1 when uv has only one hole was proved in [1]. Theorem 1 does not hold if uv is 

{|u|, |v|}-special. Take for example u = ◊bb and v = abb◊. We have uv ↑ vu but no word w and no integers m, n 

satisfying u ⊂ w
m
 and v ⊂ w

m
. Note that seq3,4 (0) = (0, 3, 6, 2, 5, 1, 4, 0) contains the holes 0, 6 of uv while 

 

(uv),(0)(uv),(3)(uv),(6)(uv),(2)(uv),(5)(uv),(1)(uv),(4)(uv),(0) 

= ◊a◊bbbb◊ 

 

is not 1-periodic showing that u v is j3, 4}-special. 

 

We end this section with the concept of a pairwise nonspecial set of partial words that is used in the sequel. 

 

Definition 3. Let X ⊂ W. Then X is called pairwise nonspecial if all u, v ∈ X of different positive lengths satisfy 

the following conditions: 

 If |u| < |v|, then v is non {|u|, |v| - |u|}-special. 

 If |u| > |v|, then u is non {|v|, |u| - |v|}-special. 

Note that any subset of W1 is pairwise nonspecial. 

 

3. Binary relations 

Throughout, we fix a finite alphabet A. We assume that the cardinality of A, denoted by ||A||, is at least two 

(unless stated otherwise). 

 

A binary relation p defined on an arbitrary set S ⊂ W is a subset of S   S. Instead of denoting (u, v) ∈ p, we 

often write upv. The relation p is called reflexive if upu for all u ∈ S; symmetric if upv implies vpu for all u, v ∈ 

S; antisymmetric if upv and vpu imply u = v for all u, v ∈ S; transitive if upv and vpw imply upw for all u, v, w ∈ 

S, and positive if ε εpu for all u ∈ S. It is called strict if it satisfies the following conditions for all u, v ∈ S: 

upu, 

upv implies |u| ≤ |v|, 

upv and |u| = |v| imply v ⊂ u. 

 

A strict binary relation is reflexive and antisymmetric, but not necessarily transitive. A reflexive, antisymmetric, 

and transitive relation p defined on S is called a partial ordering, and (S, p) is called a partially ordered set. A 

partial ordering p on S is called right (respectively, left) compatible if upv implies uwpvw (respectively, upv 

implies wupwv) for all u, v, w ∈ S. It is called compatible if it is both right and left compatible. For any two 

binary relations p1 and p2 on S, we denote by (p1) (p2) if up1 v implies up2v for all u, v ∈ S (or the subset 

inclusion), and by (p1) ⊏ (p2) if (p1) ⊂ (p2) but (p1) ≠ (p2). 

 

An important notion on binary relations is that of an antichain. A nonempty subset X of S is called an antichain 

with respect to a particular binary relation p on S (or an p-antichain) if for all distinct u, v ∈ X, (u, v) ∉ p and (v, 

u) ∉ p. The class of all p-antichains of S is denoted by A(p). For every partial word u of S, {u} is in A(p). 

 

Proposition 1. Let p1, p2 be two binary relations defined on W. Then 

1. If p1 ⊂ p2, then A(p2) ⊂ A(p1) . 

2. If p1, p2 are strict and A(p2) ⊂ A(p1), then p1 ⊂ p2. 

 

Proof. For Statement 1, let X ∈ A(p2). If X is a singleton set, then X ∈ A(p1). Now suppose that X is not a 

singleton set and let u, v ∈ X be such that u ≠ v and up1v. Then up2v by assumption. Since X is an antichain with 

respect to p2, we have u = v, a contradiction. Thus X ∈ A(p1) and A(p2) ⊂ A(p1) holds. 

 



For Statement2, suppose that there exist u, v ∈ W such that u ≠ v, up1v, and (u, v) ∉ p2. Suppose that vp2u. Since 

up1v, we have |u| ≤ |v|, and since vp2u, we have |v| ≤ |u|. Hence |u| = |v|, both up1 v and |u| = |v| imply v ⊂ u, and 

both vp2u and |v| = |u| imply u ⊂ v. We deduce that u = v, a contradiction. So {u, v} ∈ A(p2). As A(p2) ⊂ A(p1), 

we have {u, v} ∈ A(p 1) which implies that (u, v) ≠ p1, a contradiction. ∎ 

 

3.1. The δ-relations 

 

A word u ∈ W0\{ε} is primitive if u = v
n
 for some v ∈ W0\{ε} implies n = 1. Note the fact that the empty word ε 

is not primitive. For u ∈ W0\{ε}, there exists a unique primitive word v ∈ W0\{ε} and a unique positive integer n 

such that u = v
n
. We call v the (primitive) root of u, and denote it by   . All positive powers of u have the same 

root. For u, v ∈ W0\{ε}, uv = vu is equivalent to   =   . For more details on these results, we refer the reader to 

[18] for instance. 

 

A partial word u ∈ W\{ε} is primitive if u ⊂ v
n
 for some v ∈ W0\{ε} implies n = 1. Note that if x is primitive and 

x ⊂ y, then y is primitive as well. For u ∈ W\{ε}, there exists a primitive word v ∈ W0\{ε} and a positive integer 

n such that u ⊂ v
n
. However, uniqueness does not hold as is seen with the partial word u = a◊ (u ⊂ a

2
, u ⊂ ab 

with distinct letters a, b and both a, ab are primitive). For u ∈ W\{ε}, let P(u) denote the set of primitive words v 

∈ W0\{ε} such that u ⊂ v
n
 for some positive integer n. For u ∈ W0\{ε}, we have P(u

i
) =P(u) = {  }, and for u ∈ 

W\{ε}, we have P(u) ⊂ P(u
i
) for all positive powers of u. 

 

For every positive integers i, j and partial words u, v ∈ W\{ε}, define the relation δi,j by uδi,jv if P(u
i
) ∩ P(v

j
) ≠ 0/  

. In the sequel, δ1,1 is often abbreviated by δ. Note that if u ⊂ v, then P(v) ⊂ P(u) and so ubv. 

 

Lemma 5. Let i, j be positive integers. 

1. If ||A|| ≥ 2, then (δ) ⊂ (δi,j). Moreover, if (i, j) ≠ (1, 1), then (δ) ⊏ (δi,j). 

2. If ||A|| = 1, then (b) = (bi,j). 

 

Proof. The inclusion ⊂ in Statement 1 follows from the fact that P(u) ⊂ P(u
k
) for all u, k. To see that the 

inclusion ⊏ holds in case (i, j) ≠ (1, 1), we argue as follows: if i > 1, then we consider u = ◊ and v = a
i−1

b which 

satisfy (u , v) ∉ δ and uδi,jv; and if j > 1, then we consider u = a
j−1

b and v = ◊ which satisfy (u, v) ∉ δ and uδi,jv. 

Statement 2 follows from the fact that P(u) = A for all u. ∎ 

 

Lemma 6. Let i, j be positive integers, and let u, v ∈ W\{ε}. 

1. If uδi,jv, then u
i
v

j
 ↑ v

j
u

i
. 

2. If u
i
v

j
 ↑ v

j
u

i
 and u

i
v

j
 is non {|ui|, |vj|}-special, then uδi,jv. 

 

Proof. For Statement 1, if uδi,jv, then let w ∈ P(u
i
) ∩ P(v

j
). Then u

i
 ⊂ w

m
 and v

j
 ⊂ w

n
 for some integers m, n. We 

have u
i
v

j
 ⊂ w

m+n
 and v

j
u

i
 ⊂ w

m+n
, and u

i
v

j
 ↑ v

j
u

i
 follows. For Statement 2, by definition there exists a word w 

such that u
i
v

j
 ⊂ w and v

j
 u

i
 ⊂w. Put w = xy where |x| = |u

i
| and |y| = |v

j
|. Since u

i
v

j
 is non {|u

i
|, |v

j
|}-special, we get 

u
i
 v

j
 ⊂ y

x
 by Lemma 4. The two inclusions u

i
 v

j
 ⊂ xy, u

i
v

j
 ⊂ yx give xy = yx by Lemma 3, and thus    =   . 

Hence    ∈ P(u
i
) ∩ P(v

j
) since u

i
 ⊂ x and v

j ⊂ y. The relation uδi,jv follows. ∎ 

 

3.2. The p-relations 

The following are some useful binary relations on W that generalize some well-known binary relations on W0. 

 

Definition 4. Let u, v ∈ W. 

 Embedding relation: updv if there exists an integer n ≥ 0, u1,..., un ∈ W,and x0,...,xn ∈ W0 such that u = 

u1u2...un and v ⊂ x0u1x1u2...unxn. 

 Length relation: uplv if |u| < |v| or v ⊂ u. 

 Prefix relation: uppv if there exists x ∈ W0 such that v ⊂ ux. 



 Suffix relation: upsv if there exists x ∈ W0 such that v ⊂ xu. 

 Factor relation: upfv if there exist x, y ∈ W0 such that v ⊂ xuy. 

 Border relation: upov if there exist x, y ∈ W0 such that v ⊂ ux and v ⊂ yu. 

 Commutative relation: upcv if there exists x ∈ W0 such that v ⊂ xu, v ⊂ ux. 

 Exponent relation: upev if there exists an integer n ≥ 1 such that v ⊂ u
n
. 

 

Lemma 7. 

 The relations pd, pl, pp, ps, pf, and po are strictpositive partial orderings on W. 

 The relation pe is a strictpartial ordering on W. 

 The relation pc is a strictpositive binary relation on W. 

 The relation pc is a partial ordering on anypairwise nonspecial subset of W. 

 

Proof. We show the result for the relation pc (the proofs for the other relations are straight- forward). The 

relation pc is trivially strict and positive on W. Now, let X be a pairwise nonspecial subset of W. To show that pc 

is transitive, let u, v, w ∈ X be such that u ≠ v and v ≠ w. If upcv and vpcw, then let us show that upcw. If u = ε, 

then trivially εpcw, and if v = ε, then u = ε. So we assume that u, v are nonempty. For some words x and y, we 

have v ⊂ xu, v ⊂ ux and w ⊂ vy, w ⊂ yv. If x = ε, then v ⊂ u. We get w ⊂ vy ⊂ uy and w ⊂ yv ⊂ yu, and so 

upcw. If y = ε, then w ⊂ v. We get w ⊂ xu and w ⊂ ux, and so upcw. So we may assume that x, y are nonempty. 

Let u' be a full word satisfying u ⊂ u'. We get v ⊂ xu', v ⊂ u'x and thus by Lemma 3, xu' = u'x. By Lemma 2, 

there exists a primitive word z (we can choose z =   ) and positive integers k,l such that u' = z
k
 and x = z

l
. We 

have v ⊂ u'x ⊂ z
k+l

 . We get w ⊂ z
k+l

 y, w ⊂ yz
k+l

. Thus by Lemma 3, z
k+l

 y = yz
k+l

 . Using Lemma 2 and the fact 

that z is primitive, we get that y is a power of z, say y = z
m
 for some integer m. It follows that w ⊂ vy ⊂ uxy ⊂ 

uz
l+m

 and also w ⊂ yv ⊂ yxu ⊂ z
l+m

u, and so upcw. ∎ 

 

Lemma 8. 

 If ||A|| ≥ 2, then (pc) ⊏ (po). 

 If ||A|| ≥ 1, then 

(pe) ⊏ (pc) ⊂ (po) ⊏ (pp) ⊏ (pf ) ⊏ (pd) ⊏ (pl), and  

(po) ⊏ (ps) ⊏ (pf). 

 If ||A|| = 1, then (pc) = (po). 
 

Proof. If A = {a}, then (u, v) ∉ pe and upcv with u = aa and v = a◊a, (u, v) ∉ po and uppv with u = ◊ and v = ◊aa, 

(u, v) ∉ pp and upfv with u = ◊ and v = a◊a, (u, v) ∉ pf and updv with u = ◊◊ and v = ◊a◊, (u, v) ∉ pd and uplv 

with u = ◊ and v = aa, (u, v) ∉ po and upsv with u = ◊ and v = a◊, and (u, v) ∉ ps and upfv with u = ◊ and v = a◊a. 

∎ 

 

Note that if we restrict ourselves to W1 and 11A11 = 1, we have (pf) = (pd). 

 

Proposition 2. The embedding relation pd is the smallest positive compatible partial ordering on W satisfying 

apd◊ for all a ∈ A, that is, if p is a positive compatible partial ordering on Wsatisfying ap◊ for all a ∈ A, then 

(pd) ⊂ (p). 

 

Proof. The embedding partial ordering pd is clearly compatible on W. Now, let p be a positive compatible 

partial ordering on Wand let u, v ∈ W be such that updv. By induction on |u| + |v|, we show that upv. If |u| + |v| = 

0, then εpdε and εpε since pd and p are positive. If |u| + |v| > 0 and u = ε, then εpdv and εpv since pd and p are 

positive. If |u| + |v| > 0 and u ≠ ε, then put u = au' and v = bv' where a, b ∈ A ⊂{◊}. If a = b, then u'pdv', and 

using the inductive hypothesis, we get u'pv'. Since p is compatible, we have au'pav' and so upv. If a ≠ b and b ≠ 

◊, then updv', and thus by the inductive hypothesis, upv'. Since p is positive, we have εpb and since p is 

compatible, we have v'pbv' and so v'pv. Since p is transitive, we get upv as desired. On the other hand, if a ≠ b 

and b = ◊, then u'pdv', and thus by the inductive hypothesis, u'pv'. Since ap◊ and p is compatible, we have 



av'p◊v'. Since u'pv' and p is compatible, we have au'pav'. Since p is transitive, we get au'p◊v' or upv as desired. 

∎ 

 

Theoretical aspects of the embedding ordering on W0 can be found in [10,12,14,16]. An algorithmic aspect of 

the embedding ordering is motivated by molecular biology. The problem is to find, for a given set  X = {u1,...,un} 

of words, a shortest word v such that uipdv for all i. This problem is referred to as the shortest common 

supersequence problem which is known to be NP-complete [17]. 

 

4. Codes 

In this section, we extend the notion of code of words to pcode of partial words. 

 

Let X be a nonempty subset of W0\{ε}. Then X is called a code if for all integers m ≥ 1, n ≥ 1 and words 

u1,...,um, v1,...,vn ∈ X, the condition 

 

u1u2...um = v1v2...vn 

 

implies m = n and ui = vi for i = 1,...,m. 

 

In the case of partial words, we define a pcode as follows. 

 

Definition 5. Let X be a nonempty subset of W\{ε}. Then X is called a pcode if for all integers m ≥ 1 , n ≥ 1 and 

partial words u1,…,um, v1,...,vn ∈ X, the condition 

 

u1u2...um ↑ v1v2...vn 

 

implies m = n and ui = vi for i = 1,. . . ,m. 

 

It is clear from the definition that a subset X of W0\{ε} is a code if and only if it is a pcode. The following 

proposition extends a property of codes [18]. 

 

Proposition 3. Let X be a nonempty subset of W\{ε}. Then X is a pcode if and only if for every integer n > 1 and 

partial words u1,…, un , v1 ,...,vn ∈ X, the condition 

 

u1u2 ... un ↑ v1v2 ... vn  

 

implies ui = vi for i = 1,...,n. 

 

Proof. IfXis a pcode, then clearly the condition holds. Conversely, assume that X satisfies the condition stated in 

the proposition. Suppose u1u2...um ↑ v1v2 ... vn for some integers m ≥ 1, n ≥ 1 and partial words u1,...,um, v1,...,vn 

∈ X. Then 

 

u1u2...umv1 v2…vn ↑ v1v2...vnu1u2...um 

by multiplication. If m < n, then u1 = v1 , ... ,um = vm and ε ↑ vm+1...vn, which is a contradiction. Similarly, n < m 

cannot hold. Hence m = n and therefore the condition implies that Xis a pcode. ∎ 

 

Proposition 4. Let X be a nonempty subset of W\{ε}. For every u ∈ X, let xu ∈ W\{ε} be such that u ⊂ xu, and 

let Y be the set {xu | u ∈ X}. If X is a pcode, then Y is a pcode. 

 

Proof. Let n be a positive integer and let x1,…,xn,y1,...,yn ∈ Y be such that  

 

x1x2 ... xn ↑ y1y2 ... yn. 

 



For every integer 1 ≤ i ≤ n, let ui ∈ X be such that    
 = xi, and let vi ∈ X be such that     = yi. Then we have 

 

u1u2 ... un ↑ v1v2 ... vn 

 

since u1u2...un ⊂ x1x2...xn ⊂ w and v1v2...vn ⊂ y1y2...yn ⊂ w for some w. But since X is a pcode, by Proposition 3, 

ui = vi for i = 1,...,n. This implies xi =    
 =     = yi for i = 1,...,n showing that Y is a pcode. ∎ 

 

The converse of this proposition is not true. For example, let X = {u, v} where u = a and v = a◊a. The set Y = 

{a, aba} is a pcode, but X is not a pcode since u
3
 ↑ v. 

 

The following proposition shows that there is no strict positive binary relation p with the class ofpcodes being 

the class of p-antichains. 

 

Proposition 5. If ||A|| ≥ 2, then there is no strict positive binary relation p defined on W such that A(p) is exactly 

the class of all pcodes over A. 

 

Proof. Suppose to the contrary that p is a strict positive binary relation defined on W such that A(p) is exactly 

the class of all pcodes over A. Then the restriction of p to W0 is a strict positive binary relation such that the 

class ofall p-antichains is exactly the class of all codes over A contradicting a result of [19]. ∎ 

 

4.1. The class F 

 
We now consider the following class of binary relations on W partially ordered by inclusion: 

 

F = {p | pis a strict binary relation on W such that every pcode is an antichainwith respect to p}. 

 

The class F is easily seen to be closed under union and intersection. It was considered in [19] for strict positive 

binary relations on W0. 

 

The following proposition gives some closure properties for F. 

 

Proposition 6. Let y be a strict binary relation on W and let p ∈ F. Then the following conditions hold: 

1. If (y) ⊂ (p), then y ∈ F, 

2. y∩p∈F. 

 

Proof. Statement 1 follows immediately from Proposition 1. For Statement 2, since (y ∩ p) ⊂ (p) and y ∩ p is 

strict, then y ∩ p ∈ F follows from Statement 1. ∎ 

 

The next proposition implies that (δi,j ∩ p) ∈ F for all positive integers i, j and every strict binary relation p on 

W. 

 

Proposition 7. Let P be a strict binary relation on W, let X be a nonempty subset of W\{ε}, and let i, j be 

positive integers. If X is a pcode, then X is an (δi,j ∩ p)-antichain. 

 

Proof. Let X be a pcode. The case where X contains only one partial word is trivial. So let u, v ∈ X be such that 

u ≠ v and u (δi,j ∩ P) v. The latter yields uδi,jv and by Lemma 6(1), u
i
v

j
 ↑ v

j
u

i
 contradicting the fact that X is a 

pcode. ∎ 

 

The next proposition implies that pe, pc ∈ F. 

 



Proposition 8. Let X be a nonempty subset of W\{ε}. If X is a pcode, then X is an pc-antichain (respectively, pe-

antichain). 

 

Proof. Let X be a pcode. The case where X contains only one partial word is trivial. Using Proposition 1 and 

Lemma 8, it is enough to show the result for pc. Let u, v ∈ X be such that u ≠ v and upcv. Then v ⊂ ux, v ⊂ xu for 

some x ∈ W0. If x = ε, then v ⊂ u. This gives v ↑ u and hence uv ↑ vu. If x ≠ ε, then uv ⊂ uxu, vu ⊂ uxu and so uv 

↑ vu. In either case we get a contradiction with the fact that X is a pcode. Hence X is an antichain with respect to 

Pc. ∎ 

 

The above proposition does not hold for po. For example, X = {ab
2
, ba, ab, b

2
a} is an po-antichain but not a 

pcode since (ab
2
) (ba) = (ab)(b

2
a). 

 

The next two propositions relate two-element pcodes with the relation     ∈ . 

 

Proposition 9. Let u,v ∈ W\{ε} be such that |u| < |v|. Then     ∈ v if and only if {u, v} is not a pcode. 

 

Proof. The condition is obviously necessary. To see that the condition is sufficient, suppose that {u, v} is not a 

pcode and let (u, v) ∉     ∈ . Let y = {(u, v)} ∪     ∈ . Then     ∈  ⊏ y and y ∈ F, a contradiction. ∎ 

 

A subset X of W is called pairwise noncompatible if u ↑/  v for all distinct u, v ∈ X. 

 

Proposition 10. Let X ⊂ W\{ε} be pairwise noncompatible. Then X is an     ∈ -antichain if and only if for 

all u, v ∈ X such that u ≠ v, {u, v} is a pcode. 

 

Proof. First, suppose that X is an     ∈ -antichain. Let u, v ∈ X be such that u ≠ v. Without loss of generality, 

we can assume that |u| ≤ |v|. Since X is an     ∈ -antichain, we have (u, v) ∉     ∈ . If |u| < |v|, then {u, v} 

is a pcode by Proposition 9. If |u| = |v|, then u ↑/ v since X is pairwise noncompatible. Certainly, in this case, {u, 

v} is a pcode.  

 

Conversely, suppose to the contrary that there exist u, v ∈ X such that u ≠ v and (u , v) ∈     ∈ . The set {u, 

v} is a pcode by our assumption. Since     ∈  is strict, we have |u| ≤ |v|. If |u| < |v|, then {u, v} is not a pcode 

by Proposition 9, a contradiction. If |u| = |v|, then v ⊏ u since     ∈  is strict. So u ↑ v contradicting the fact 

that {u, v} is a pcode. So X is an     ∈ -antichain. ∎ 

 

4.2. The class G 

We now consider the following class of binary relations on W partially ordered by inclusion: 

 

G ={p | p is a strict binary relation on W such that every antichain with respect to p is a pcode}. 

 

The class G was considered in [19] for strict positive binary relations on W0. 

 

The following proposition gives a closure property for G and immediately implies that G is closed under union. 

 

Proposition 11. Let y be a strict binary relation on Wand let p ∈ G. If (p) ⊂ (y), then y ∈ G. 

 

Proposition 12. Let u ∈ W0\{ε}, v ∈ W\{ε} be such that |u| ≤ |v|. If {u, v} is an antichain with respect to po 

(respectively, pp, ps, pf, pd, pl), then {u, v} is a pcode. 

 

Proof. By Proposition 1 and Lemma 8, it is enough to show the result for po. Suppose to the contrary that {u, v} 

is not a pcode. Then there exist an integer n ≥ 1 and partial words u1,...,un,v1,...,vn ∈ {u , v} such that 



 

u1u2…un ↑ v1v2...vn, 

 

and with |u1u2...un| as small as possible contradicting Proposition 3. We hence have u1 ≠ v1 and un ≠ vn. If n = 1, 

then u ↑ v. Since u is full, we get v ⊂ u and so upov, which is a contradiction. So we may assume that n ≥ 2. 

There are four possibilities: u1 = un = u, v1 = vn = v; u1 = vn = u, v1 = un = v; u1 = vn = v, v1 = un = u; and u 1 = un 

= v, v1 = vn = u. In all cases, put u2...un−1 = x and v2...vn−1 = y. These possibilities can be rewritten as 

(1)  uxu ↑ vyv, 

(2)  uxv ↑ vyu, 

(3)  vxu ↑ uyv, 

(4)  vxv ↑ uyu. 

 

If |u| = |v|, for any of possibilities (1)–(4) we have u ↑ v which leads to a contradiction. If |u| < |v|, for any of 

possibilities (1)–(4) there exist w, w', z, z' ∈ W\{ε} such that v = wz = z'w', w ↑ u, and w' ↑ u. The latter two 

relations give w ⊂ u and w' ⊂ u since u is full. There exist z1, z2 ∈ W0 such that z ⊂ z1 and z' ⊂ z2. We get v = wz 

⊂ uz ⊂ uz1, v = z' w' ⊂ z' u ⊂ z2u and so upov, which is a contradiction. ∎ 

 

The converse of the above proposition is not true. For example, the set X = {a, aba} is a pcode, but a poaba. 

The above proposition is not true if u has a hole. The set {u, v} where u = a◊ and v = ◊a is an pl-antichain, but 

{u, v} is not a pcode. This latter example shows that pe, pc, po, pp, ps, pf, pd, and pl are not in G. 

 

5. Prefix and suffix orderings 

In this section, we discuss the prefix and the suffix orderings which we denote by ≺ p and 

≺ s instead of pp and ps. 

 

It is well-known that a subset X of W0\{ε} is an antichain with respect to ≺p if and only if X is a prefix code, or 

if for any u ∈ X, ux ∉ X for all x ∈ W0\{ε} [18]. 

 

We now show that with partial words, the antichains with respect to ≺p are the anti-prefix sets defined as 

follows. 

 

Definition 6. Let X ⊂ W\{ε}. Then X is anti-prefix if for any u ∈ X, the following conditions hold: 

 If v ⊏ u, then v ∉ X. 

 If v ⊂ ux for some x ∈ W0\{ε}, then v ∉ X. 

 

It is immediate that a singleton set is anti-prefix and any nonempty subset of an anti-prefix set is anti-prefix. 

Hence any nonempty intersection of anti-prefix sets is anti-prefix. 

 

Proposition 13. Let X ⊂ W0\{ε}. Then X is an antichain with respect to ≺p if and only if X is anti-prefix. 

 

Proof. Assume that X is an antichain with respect to ≺p. Let u ∈ X, and suppose to the contrary that X is not 

anti-prefix. So either there exists v ∈ X with v ⊏ u, or there exist v ∈ X and x ∈ W0\{ε} such that v ⊂ ux. In either 

case, we have u, v ∈ X, u ≠ v, and u ≺p v contradicting our assumption. On the other hand, if X is anti-prefix, 

then suppose to the contrary that there exist u, v ∈ X with u ≠ v and u ≺p v. Then v ⊏ u or there exists x ∈ 

W0\{ε} such that v ⊂ ux. In either case, v ∉ X a contradiction. ∎ 

 

Corollary 1. Let u ∈ W0\{ε}, v ∈ W\{ε} be such that |u| ≤ |v|. If {u, v} is anti-prefix, then {u, v} is a pcode. 

 

Proof. The result follows from Propositions 12 and 13. ∎ 

 



A subset X of W0\{ε} is an antichain with respect to ≺s if and only if X is a suffix code, or if for any u ∈ X, xu ∉ 

X for all x ∈ W0\{ε} [18]. 

 

The family of anti-suffix sets coincides with the family of antichains with respect to ≺s. 

 

Definition 7. Let X ⊂ W\{ε}. Then X is anti-suffix if for any u ∈ X, the following conditions hold: 

 If v ⊏ u, then v ∉ X. 

 If v ⊂ xu for some x ∈ W0\{ε}, then v ∉ X. 

 

Proposition 14. Let X ⊂ W\{ε}. Then X is an antichain with respect to ≺s if and only if X is anti-suffix. 

 

Proof. The proof is similar to that of Proposition 13. ∎ 

 

Corollary 2. Let u ∈ W0\{ε}, v ∈ W\{ε} be such that |u| ≤ |v|. If {u, v} is anti-suffix, then {u, v} is a pcode. 

 

Proof. The result follows from Propositions 12 and 14. ∎ 

 

We end this section by noticing that there exist anti-prefix (or anti-suffix) sets that are not pcodes. For example, 

the set {u, v} where u = a◊b and v = abbaab is both anti-prefix and anti-suffix, but {u, v} is not a pcode since u
2
 

↑ v. 

 

6. Border ordering 

In this section, we discuss the border ordering which we denote by ≺o instead of po. Let v be a nonempty partial 

word. By definition, ε ≺o v and v ⊄ ε, and let N (v) be the number of partial words u satisfying u ≺o v and v ⊄ u. 

For any integer i ≥ 0, define Oi as follows: 

 

O0 = {ε} 

 

and for i ≥ 1, 

 

Oi = {v | v ∈ W\{ε} and N(v) = i}. 

 

We are particularly interested in the partial words in O1. A nonempty partial word v is called unbordered if u ≺o 

v for some nonempty partial word u implies v ⊂ u. Clearly, v is unbordered if v ⊂ ux and v ⊂ yu imply x = y = ε 

or u = ε. The fact that v is unbordered means that there exist no nonempty partial words u, x, y satisfying v ⊂ ux 

and v ⊂ yu. Note that O1 is the set of all nonempty unbordered partial words, which is a subset of the primitive 

partial words [5]. From the point of view of the partial order ≺o, we call the partial words in O1 o-primitive. It is 

easy to see that W =        with Oi ∩ Oj = 0/  if i ≠ j. 

 

The following extend results of [2]. 

 

Proposition 15. Let u ∈ W\{ε} be such that 0 ∉ H(u). If ||A|| ≥ 2, then there exists v ∈ W0 such that uv is 

unbordered. 

 

Proof. Let a be the first letter of u, and let b ∈ A\ {a }. We claim that the partial word 

w = uab
|u|

 is unbordered. To see this, suppose there exist nonempty partial words x, y, z satisfying w ⊂ xy, w ⊂ 

zx. Since w ⊂ xy, the nonempty word x starts with the letter a. Since w ⊂ zx, we have |x | > |u |. But then we 

have x = x'ab
|u|

 for some x' ∈ W, and also x = u' ab
|x'|

 for some u' ∈ W satisfying |u'| = |u|. Thus |x'| = |u|, and 

hence w ⊂ x, a contradiction. ∎ 

 



Proposition 16. Let X ⊂ W\{ε} be a pcode. If u ∈ W0 is an unbordered word such that u ∉ F(C(X
*
)), then the 

set Y = X ∪ {u} is apcode. 

 

Proof. Let U = W\C(WuW). Then by assumption X
*
 ⊂ U. Let us first observe the following property of the set V 

= Uu: for all v, v' ∈ U, v'u ↑ vux for some x implies v ↑ v'. To see this, suppose that v'u ↑ vux for two partial 

words v and v' in U and some x. If |vu| > |v'|, then vu ↑ v'y with u = yz for some y, z. We deduce that yz ↑ z'y for 

some z'. If z = ε, then vu ↑ v'u and v ↑ v'. If z ≠ ε, then since y is full, by conjugacy on partial words [9], there 

exist words x', y' such that z' ⊂ x'y', z ⊂ y'x', and y ⊂ (x'y')
n
x' for some integer n ≥ 0. But then u ⊂ (x'y')

n+1
x', and 

since u is unbordered, x' = ε. If n > 0, u is bordered, and if n = 0, we get y = ε and so vu ↑ v'. This leads to v' ∈ 

C(WuW), which is a contradiction. Hence |vu| ≤ |v'|, and vuy ↑ v' for some y. But then again v' is in C(WuW), a 

contradiction. 

 

Now, we show that Y is a pcode. Assume the contrary and consider a relation 

 

u1u2...um ↑ v1v2...vn 

 

with u1,...,um,v1,...,vn ∈ Y, and u1 ≠ v1. The set X being a pcode, one of these partial words must be u. Assume 

that one of u1,...,um is u, and let i be the smallest index such that ui = u. Since WuW ∩ C(X
*
) = 0/  , it follows that 

Wui W ∩ C(X
*
) = 0/  . Consequently one of v1,...,vn is u. Let j be the smallest index such that vj = u. Then 

u1...ui−1u, v1...vj−1u ∈ V whence u1...ui−1 ↑ v1...vj−1 by the abovementioned property of V. The set X is a pcode, 

thus from u1 ≠ v1 it follows that i = j = 1 leading to a contradiction. ∎ 

 

A pcode X is called maximal over A if it is not a proper subset of any other pcode over A. It is called complete if 

F(C(X
*
)) = W. 

 

Theorem 2. Let X ⊂ W\{ε}. If X is a maximal pcode, then X is complete. 

 

Proof. Let X ⊂ W\{ε} be a maximal pcode that is not complete. If ||A|| = 1, then X  = 0/  and X is not maximal. If 

||A|| ≥ 2, consider a word u ∈ W\{ε} such that u ∉ F(C(X
*
)). We may choose u in W0. According to Proposition 

15, there exists a word v ∈ W0 such that uv is unbordered. We have uv ∉ F(C(X
*
)), and it then follows from 

Proposition 16 that X ∪ {uv} is a pcode. Thus X is not maximal, a contradiction. ∎ 

 

7. Commutative ordering 

In this section, we discuss the commutative ordering that we denote by ≺c instead of pc. 

 

Lemma 9. Let u, v ∈ W\{ε} be such that v is non {|u|, |v| − |u|}-special. Then u ≺c v if and only if there exists a 

primitive word z and integers m, n such that u ⊂ z
m
 and v ⊂ uz

n
 ⊂ z

m+n
, v ⊂ z

n
u ⊂ z

m+n
. 

 

Proof. Let u, v ∈ W\{ε} be such that v is non {|u|, |v| − |u|}-special. If u ≺c v, then for some word x ∈ W0, we 

have v ⊂ xu, v ⊂ ux. Let u' ∈ W0 be such that u ⊂ u'. If x = ε, then v ⊂ u ⊂ u' and there exists a primitive word z 

and a positive integer m such that u' = z
m
. Hence u ⊂ z

m
, v ⊂ uz

0
 ⊂ z

m+0
, v ⊂ z

0
u ⊂ z

m+0 
and the result follows. 

So we may assume that x is nonempty. We get v ⊂ xu', v ⊂ u'x and thus by Lemma 3, xu' = u'x. By Lemma 2, 

there exists a primitive word z and positive integers m, n such that u' = z
m
 and x = z

n
 (z =   ). This in turn 

implies that u ⊂ u' ⊂ z
m
 and v ⊂ ux = uz

n
 ⊂ z

m+n
, v ⊂ xu = z

n
u ⊂ z

m+n
. ∎ 

 

It is known that a subset X of W0\{ε} is an antichain with respect to ≺c if and only if X is anti-commutative, or if 

for all u, v ∈ X satisfying u ≠ v, we have uv ≠ vu [15]. Now, we call a subset X of W\{ε} anti-commutative if for 

all u, v ∈ X satisfying u ≠ v, we have uv ↑/ vu. Certainly, every pcode is anti-commutative. 

 

Proposition 17. Let X ⊂ W\{ε} be pairwise nonspecial. If X is anti-commutative, then X is an antichain with 

respect to ≺c. 



Proof. If X is anti-commutative, then let us show that X is an antichain with respect to ≺c. Suppose to the 

contrary that there exist u, v ∈ X with u ≠ v and u ≺c v. The latter implies that |u| ≤ |v|. By assumption, v is non 

{|u |, |v| − |u|}-special, and by Lemma 9, there exists a primitive word z and integers m, n such that u ⊂ z
m
 and v 

⊂ z
m+n

. But then uv ↑ vu contradicting the fact that X is anti-commutative. ∎ 

 

Proposition 18. Let X ⊂ W\{ε}. Let u, v ∈ X be such that u is full, u ≠ v, and uv is non {|u|, |v|}-special. If X is 

an antichain with respect to ≺c, then uv ↑/ vu. 

 

Proof. Suppose to the contrary that uv ↑ vu. There exists a word z such that uv ⊂ z and vu ⊂ z. Put z = xy where 

u ⊂ x and v ⊂ y. We have uv ⊂ xy, and by Lemma 4 we also have uv ⊂ yx. Lemma 3 implies xy = yx, and so x, y 

are powers of a common word. Say x = w
m
 and y = w

n
 for some word w and integers m, n. Since u is full, we 

have u = w
m
. If m = n, then v ⊂ y = w

n
 = w

m
 = u, and so u ≺c v. For the case m < n, we have v ⊂ y = w

n
 = uw

n−m 

=w
n−m

u and thus u ≺c v. Similarly, we can show that if m > n, then v ≺c u. In all cases, we obtain a 

contradiction. 

 

In Proposition 18, both the assumptions that u is full and uv is non {|u|, |v|}-special are needed. Indeed, if we put 

X = {u, v} where u = a◊b and v = aab◊ab, we get thatXis an antichain with respect to ≺c and that uv ↑ vu. This 

example is such that u is nonfull and uv is non {|u|, |v|}-special. Now, if we put X = {u, v} where u = abbaab 

and v = ◊◊◊◊, we get that X is an antichain with respect to ≺c and that uv ↑ vu. This example is such that u is full 

and u v is {| u |, |v|}-special. 

 

Let u',x, y ∈ W0\{ε}, v' ∈ W\{ε} be such that |x| = |y| and |u'x| = |v'|. Then the set {u, v} where u = u'x and v = v'y 

(respectively, u = xu' and v = yv') is said to be of type 1 (respectively, type 2) if v is not {|u|, |x|}-special. 

 

Proposition 19. Let u, v ∈ W\{ε} be such that {u, v} is of type 1 or type 2. Then uv ↑/ vu if and only if {u, v} is a 

pcode. 

 

Proof. We prove the result for type 1 (type 2 is similar). If {u, v} is a pcode, then clearly uv ↑/ vu. Conversely, 

assume that {u, v} is not a pcode and uv ↑/ vu. Then there exist an integer n ≥ 1 and partial words u1,...,un, 

v1,...,vn ∈ {u , v} such that 

 

u1u2...un ↑ v1v2...vn 

 

and with |u1u2...un| as small as possible contradicting Proposition 3. We hence have u1 ≠ v1 and un ≠ vn, and we 

may assume that n > 2. There are the four possibilities (1)–(4) as in Proposition 12. Since {u , v} is of type 1, 

there exist u', z1, z2 ∈ W0\{ε}, v' ∈ W\{ε} such that |z1| = |z2|, |u'z1| = |v'|, u = u'z1, v = v'z2, and v is not {|u|, |z1|}-

special. Any possibility gives v' ↑ u. Substituting u by u'z1 and v by v'z2 in (1)–(4) we get 

(5) u'z1xu'z1 ↑ ↑ v'z2yv'z2, 

(6) u'z1xv'z2 ↑ ↑ v'z2yu'z1, 

(7) v'z2xu'z1 ↑ ↑ u'z1yv'z2, 

(8) v'z2xv'z2 ↑ ↑ u'z1yu'z1. 

 

Any possibility implies z1 ↑ z2, and hence z1 = z2 since both z1 and z2 are full. So v = v'z1, and hence both u and v 

end with z1, and the same is true for both x and y. We deduce that v ↑ z1u, and so v'z1 ↑ z 1 u and hence v'z1 ⊂ 

z1u. The fact that v' ↑ u implies v'z1 ⊂ uz1. By Lemma 3, we get uz1 = z1u since v is not {|u|, |z1|}-special, and by 

Lemma 2, u and z1 are powers of a common word. So v = v'z1 ⊂ uz1 is contained in a power of that same 

common word. But then uv ↑ vu, a contradiction. ∎ 

 

Note that the above proposition is not true in general. The set {u , v} where u = a◊b and v = abbaab satisfies uv 

↑/ vu, but {u, v} is not a pcode since u
2
 ↑ v. 

 



8. Deciding the pcode property 

Here, we give (in Section 8. 1) a brief overview of Head and Weber’s domino technique on words [ 13], and we 

give (in Section 8.2) our extension of this technique to partial words. As an application, the pcode property 

turns out to be decidable. 

 

8. 1. Domino technique on words 

Let X be a nonempty finite subset of A
+
. For α, β ∈ X

*
 satisfying α = β put α = α1α2...αm and β = β1 β2...βn for 

some α1,...,am, β1,...,βn ∈ X. We say that the relation α = β is trivial if m = n and α1 = β1,..., αm = βm. We say that 

the relation α = β is factorizable if there exist α', α'', β', β" ∈ X
+
 such that α = α'α", β = β'β" α' = β', and α'' = β". 

 

In order to study the relations satisfied by X, Guzmán suggested to look at the simplified domino graph and the 

domino function of X [11] (this approach was further considered in [3] for instance). The simplified domino 

graph of X is a subgraph of the Head and Weber’s domino graph of X defined in [13]. 

 

Let Prefix(X) be the set of all prefixes of words in X, and let G = (V, E) be the directed graph with vertex set 

 

V = {open, close,   
 
 ,   

 
  | u ∈ Prefix (X)\{ε}} 

 

and with edge set E = E1 ∪ E2 ∪ E3 ∪ E4 where 

 

E1 = {(open,   
 
 ) | u ∈ X}, 

E2 = {(  
 
 , close) | u ∈ X}, 

E3 = {(  
 
 ,    

 
 ), (  

 
 ,   

  
 ) | v ∈ X}, 

E4 ={(  
 
 ,   

 
 ), (  

 
 ,   

 
 ) | uv ∈ X}. 

 

The simplified domino graph associated with X is the directed graph G' = (V', E') where V' consists of open, 

close and those vertices v in V such that there exists a path from open to close that goes through v, and E' 

consists of those edges e in E such that there exists a path from open to close going through e. The simplified 

domino graph of X will be denoted by G (X). The domino function associated with X is the mapping d from E to 

{  
 
 ,   

 
  | u ∈ X} defined on 

 

E1 by (open,(  
 
 ) ↦   

 
 , 

E2 by (  
 
 , close) ↦   

 
 , 

E3 by (  
 
 ,    

 
 ) ↦   

 
  and (  

 
 ,   

  
 ) ↦   

 
 , 

E4 by (  
 
 ,   

 
 ) ↦    

 
  and (  

 
 ,   

 
 ) ↦   

  
 . 

 

The domino associated with an edge e of E is the domino d(e) =       
     

  The function d induces mappings d1 and 

d2 from E to X ∪ {ε} also called domino functions. If p = e1e2...ei is a path in G, then d(e1)d(e2)...d(ei) 

(respectively, d1(e1)d1(e2)...d1(ei), d2(e1)d2(e2)...d2(ei)) is denoted by d (p) (respectively, d1(p), d2(p)). 

 

A path p in G(X) from open to some vertex   
 
  (respectively,   

 
 ) is trying to find two decodings of the same 

message over X into codewords beginning with distinct codewords. The decodings obtained so far are d1(p) and 

d2(p). The word u in A
*
 denotes the back-log of the first (respectively, second) decoding as against the second 

(respectively, first) one. 

 

The next proposition illustrates how the paths from open to close in G (X) correspond to nontrivial 

nonfactorizable relations satisfied by X. 

 



Proposition 20 (Guzmán [11]). Let X be a nonempty finite subset of A
+
. For α, β ∈ X

*
,  

α = β is a nontrivial nonfactorizable relation if and only if there exists a path p in G (X) from open to close such 

that d (p) =   
 
  or d (p) =   

 
 . 

 

If G(X) is treated as an automaton with initial state open and final state close, the set accepted by G (X) consists 

of dominoes   
 
  such that α, β ∈ X

*
 and α = β. 

 

The code property of X can be characterized in terms of its simplified domino graph G(X) as follows. 

 

Theorem 3 (Head and Weber [13]). Let X be a nonempty finite subset of A
+
. Then X is a code if and only if 

there is no path in G (X) from open to close.  
 

8.2. Domino technique on partial words 

In this section, we show that it is decidable whether or not a nonempty finite subset of W\{ε} is a pcode. Our 

approach is based on an adaptation of the domino technique of the previous section. 

 

Let X be a nonempty finite subset of W\{ε}. For α, β ∈ X
*
 satisfying α ↑ β, put α = α1 α2...αm and β = β1β2...βn for 

some α1,...,αm, β1,...,βn ∈ X. We say that the relation α ↑ β is trivial if m = n and α1 = β1,...,αm = βm. We say that 

the relation α ↑ β is factorizable if there exist α',α'',β', β" ∈ X
+
 such that α = α'α", β = β'β", α' ↑ β', and α'' ↑ β''. 

 

In order to study the compatibility relations 

 

α1α2 ... αm ↑ β1β2 ... βn 

 

where α1 ,... , αm, β1,...,βn ∈ X, we extend the technique of Section 8.1. Let Prefix(X) be the set of all prefixes of 

partial words in X, and let G = (V, E) be the directed graph with vertex set 

 

V = {open, close,   
 
 ,   

 
  | u ∈ C(Prefix(X))\{ε}} 

 

and with edge set E = E1 ∪ E2 ∪ E3 ∪ E4 where 

 

E1 = {(open,   
 
 ) | u ∈ X}, 

E2 = {(  
 
 , close), (  

 
 , close) | u ∈ C (X) }, 

E3 = {(  
 
 ,    

 
 ), (  

 
 ,   

  
 ) | v ∈ X}, 

E4 = {  
 
 ,   

 
 ),  (  

 
 ,   

 
 ) | w = u'v, u ↑ u', w ∈ X}. 

 

The simplified domino graph associated with X is the directed graph G' = (V', E') where V' consists of open, 

close and those vertices v in V such that there exists a path from open to close that goes through v, and E' 

consists of those edges e in E such that there exists a path from open to close going through e. The simplified 

domino graph of X will be denoted by G (X). The domino function associated with X is the mapping d from E to 

the set of nonempty subsets of {(  
 
 ,   

 
 ) | u ∈ X} defined on 

 

E1 by (open,   
 
 ) ↦ {  

 
 }, 

E2 by (  
 
 , close) ↦ {  

 
  | u ↑ v  and v ∈ X} and (  

 
   close  ↦ {  

 
  | u ↑ v and v ∈ X} 

E3 by (  
 
 ,    

 
 ) ↦   

 
  and (  

 
 ,   

  
   ↦ {  

 
 }, 

E4 by (  
 
 ,   

 
 ) ↦ {  

 
  | w = u’u u ↑ u’ and w ∈ X} and (  

 
 ,   

 
 ) ↦ {  

 
  | w = u’v, u ↑ u’ and w ∈ X} 

 

The domino set associated with an edge e of E is the set d(e). If p = e1e2...ei is a path in G, the set 

 



d(e1)d(e2) ... d(ei) = {x1x2...xi | x1 ∈ d(e1), x2 ∈ d(e2),...,xi ∈ d(ei)} 

 

is denoted by d(p). For x =    
  
     

  
 …   

  
  in d (p), we abbreviate y1y2...yi by above(x) and z1z2...zi by below(x). 

We will also write x =          
         

  Note that above(x), (below(x) are in X
*
. 

 

A path p in G(X) from open to some vertex   
 
  is trying to find a nontrivial compatibility relation over X. The 

factorizations obtained so far for a particular x ∈ d(p) are above(x) and below(x). More precisely, if above(x) = 

α1 α2 ... αm and below(x) = β1β2 ... βn, then α1 ≠ β1 and α1 α2 ... αmu ↑ β1β2...βn and u is a suffix of β1β2...βn. The 

partial word u denotes the backlog of the first factorization as against the second one. Similarly, if p is from 

open to some vertex   
 
 , then α1 ≠ β1 and α1 α2 ... αm ↑ β1β2 ... βnu and u is a suffix of α1α2...αm. In this case, u 

denotes the backlog of the second factorization as against the first one. 

 

In the sequel, in order to simplify the notation, we identify both open and close with   
 
 . 

 

Lemma 10. 1. If u ∈ C (Prefix(X)) and there exists a path p in G (X) from open to   
 
  (respectively,   

 
 ), then 

d(p) consists of elements of the form   
  
  (respectively,    

 
 ) for 

some α, β ∈ W satisfying α ↑ β. 

2. If there exists a path p in G (X) from open to close such that   
 
  ∈ d(p), then α ↑ β is β a nonfactorizable 

compatibility relation satisfied by X. Moreover, if p is of length at least 3, then α ↑ β is nontrivial. 

 

Proof. First, Statement 1 follows by induction. The only path of length 1 from open is an E1-edge of the form 

(open,   
 
 ) for some u ∈ X. Here, d(p) ={  

 
 } and the result follows with α = β = ε. Now, consider the path q = 

pe where p is a path from open to   
 
  and e is an edge from   

 
 . By the inductive hypothesis, d(p) consists of 

elements of the form   
  
  for some α, β ∈ W satisfying α ↑ β. For e =(  

 
 , close) ∈ E2, d(pe) = d(p)d(e) βu 

consists of elements of the form   
  
    

 
  =    

  
  =    

  
  where u ↑ v and v ∈ X. For e = (  

 
 ,    

 
  ∈ E3, d(pe) 

consists of elements of the form   
  
    

 
  =   

   
  =    

    
  where v ∈ X. Finally, for e = (  

 
 ,   

 
 ) ∈ E4, d(pe) 

consists of elements of the form   
  
    

 
  =    

  
  =      

  
  =     

  
  where w = u’v u ↑ u’ and w ∈ X. In any case, 

the result follows with some α',β' ∈ W satisfying α' ↑ β'. The result follows similarly when p is a path from open 

to   
 
  and e is an edge from   

 
  

 

Second, let us show that Statement 2 holds. If there exists a path p from open to close such that 

  
 
  ∈ d(p), then by Statement 1, α ↑ β since close =   

 
 . But by the definition of d(p), we have α, β ∈ X

*
 and 

thus α ↑ β is a compatibility relation satisfied by X. ∎ 

 

The next lemma shows how to obtain the path corresponding to a given nontrivial non-factorizable 

compatibility relation. First, we need some definitions. 

 

For two partial words α, β ∈ W, we write α ≤, β if α ∈ C(Prefix(β)) where Prefix(β) is the set of all prefixes of β, 

and α < β if α ≤ β and α ↑/  β. 

 

Let α, β ∈ X
*
, and put α = α1α2...αm and β = β1β2...βn. We say that   

 
  has a proper prefix compatibility relation 

if there exist α', β' ∈ X
+
 such that α' is a prefix of α, β' is a prefix of β,   

 
  ≠    

  
  and α' ↑ β' is a compatibility 



relation. Note that a nonfactorizable compatibility relation α ↑ β is such that   
 
  has no proper prefix 

compatibility relation. We say that   
 
  has the nppcr property if the following three conditions hold: 

 

(i) α ≤ β and the suffix y of β satisfying β ↑ αy belongs to C(Prefix(X)), or β ≤ α and the suffix y of α 

satisfying α ↑ βy belongs to C(Prefix(X)). 

(ii)   
 
  has no proper prefix compatibility relation. 

(iii) If n > 0, then m > 0 and |α1| < |β1|. 

 

Lemma 11. 1. Let a, β ∈ X
*
 be such that there exists a path p in G(X) from open to v1 ∈ V with   

 
  ∈ d(p). 

(a) If v1 = 
 
 
  and v ∈ X is such that uv ∈ C(Prefix(X)), then there exist v2 ∈ V and a path q from open to v2 

such that   
  
  ∈ d(q). 

(b) If v1 =   
 
  and w = u'v ∈ X is such that u ↑ u' and v ∈ C(Prefix(X)), then there exist v2 ∈ V and a path q 

from open to v2 such that    
 
  ∈ d(q). 

(c) If v1 =   
 
  and v ∈ X is such that uv ∈ C(Prefix(X)), then there exist v2 ∈ V and a path q from open to v2 

such that    
 
  ∈ d(q). 

(d) If v1 =   
 
  and w = u'v ∈ X is such that u ↑ u' and v ∈ C(Prefix(X)), then there u exist v2 ∈ V and a path q 

from open to v2 such that   
  

  ∈ d(q). 

2. Let α, β ∈ X
*
 be such that  

 
 has the nppcr property. Then there exist v ∈ V and a path|p in G(X) from 

open to v such that   
 
  ∈ d(p). 

3. Let α, β ∈ X
*
 be such that α ↑ β is a nontrivial nonfactorizable compatibility relation. Then there exists a 

path p in G(X) from open to close such that   
 
  ∈ d(p) or   

 
  ∈ d(p). 

 

Proof. Cases (a) and (c) of Statement 1 lead to edges in E3, and Cases (b) and (d) lead to edges in E2 or E4 

depending on whether v = ε or v ≠ ε. Let us consider Case (b) (the other cases are similar). If v ≠ ε, then put v2 = 

  
 
  and e = (  

 
 ,   

 
 ) ∈ E4. Here,   

 
   

 
  =    

 
  ∈ d(p)d(e) = d(q). On the other hand, if v = ε, then u' = w and 

take v2 = close and e =(  
 
 , close) ∈ E2. Here,   

 
   

 
  =    

 
  ∈ d(p)d(e) = d(q). 

 

For Statement 2, the proof is by induction on m + n where α = α1α2...αm and β = β1β2...βn. If m + n = 1, then by 

the nppcr property, we must have m = 1 and n = 0. Thus, α = α1 and β = ε. Let v =   
  
  and p be the path 

consisting of the edge e = (open, v) ∈ E1. Then   
 
  =    

 
  ∈ d(e) = d(p).  

 

If m + n > 1, then m > 0 by the nppcr property. So let α' = α1α2...αm−1, and whenever n > 0, let β' = β1β2...βn−1. 

Note that when α < β, we have n > 0 and β' is defined. Moreover, by the nppcr property, we have α ↑/  β' and α' 

↑/  β. So we consider the following cases: 

 If a < β and a < β', then use the inductive hypothesis on   
  
 and Statement 1(a). 

 If a < β and β' < a, then use the inductive hypothesis on   
  
  and Statement 1(d). 

 If β ≤ a and a' < β, then use the inductive hypothesis on    
 
  and Statement 1(b). 

 If β ≤ a and β < a', then use the inductive hypothesis on    
 
  and Statement 1(c). 

 



Let us consider the third case (the other cases are similar). If β ≤ α and α' < β, then put w = αm. Since α' < β, let 

u be the suffix of β such that β ↑ α'u. The latter and the fact that β ≤ α imply that w = u'v ∈ X with u ↑ u'. Since β 

≤ α, the suffix v of α satisfying α ↑ βv belongs to C(Prefix(X)). We have u ∈ C(Prefix(X)), and so    

 
  has the 

nppcr property. By the inductive hypothesis, there exist v1 ∈ V and a path q from open to v1 such that    
 
  ∈ 

d(q). By Lemma 10(1), v1 =   
 
 . So by Statement (1)(b), there exist v2 ∈ V and a path p from open to v2 such 

that   
 
  =     

 
 ∈ d(p). 

 

For Statement 3, we first note that if α, β are distinct compatible elements of X, then the path p = e1e2 in G(X) 

where e1 = (open,   
 
 ) and e2 = (  

 
 , close) is such that   

 
  ∈ d(p). Otherwise, since α ↑ β is a compatibility 

relation satisfied by X, Condition (i) of nppcr is satisfied. Since it is nonfactorizable, Condition (ii) is satisfied. 

Finally, since it is nontrivial and nonfactorizable, one of   
 
  and   

 
 , say the first, satisfies Condition (iii). 

Hence   
 
  has the nppcr property. By Statement 2, there exist v ∈ V and a path p from open to v such that   

 
  ∈ 

d(p). By Lemma 10(1), we must have v = close. ∎ 

 

If G (X) is treated as an automaton with initial state open and final state close, by Lemma 10(3), the set accepted 

by G(X) consists of dominoes   
 
  such that a, β ∈ X

*
 and a ↑ β. 

 

A subset X of W containing two distinct compatible partial words is obviously not a pcode. We call X pairwise 

noncompatible if no distinct partial words u, v ∈ X satisfy u ↑ v. The pcode property of such a set X can be 

characterized in terms of its simplified domino graph G(X) as follows. 

 

Theorem 4. Let X be a nonempty finite subset of W\{ε} that is pairwise noncompatible. Then X is a pcode if and 

only if there is no path of length at least 3 in G(X) from open to close. 

 

Proof. The above two lemmas illustrate how the paths of length at least 3 from open to close in G(X) 

correspond to nontrivial nonfactorizable compatibility relations satisfied by X. Indeed, for α, β ∈ X
*
, α ↑ β is a 

nontrivial nonfactorizable compatibility relation if and only if there exists a path p of length at least 3 in G (X) 

from open to close such that   
 
  ∈ d(p) or   

 
  ∈ d(p). ∎ 

 

As an example, let us consider the set X = {u1, u2, u3, u4} over the binary alphabet {a, b} (u1 = a◊b, u2 = 

aab◊bb, u3 = ◊b, and u4 = ba). The simplified domino graph and function associated with this set are displayed 

in Fig. 1. The domino set d(e) associated with an edge e of the graph is represented as the label of this edge. 

Since the domino sets in this example are all singletons, the domino set {   
 
 } say has been abbreviated by 

   
 
 . The reader is invited to take any path of length at least 3 in the simplified domino graph starting at open 

and ending at close and to see how a domino sequence x associated with its edges leads to a nontrivial 

nonfactorizable compatibility relation of the form above(x) ↑ below(x). The path 

 

           
 

   
   

 

     
   

 

 
   

 

 
   

 

 
   

 

 
   

 

   
        

 

of length at least 3 is from open to close showing that X is not a pcode. The sequence of labels 

 

 
  

 
  

  

 
  

 

  
  

  

 
  

 

  
  

  

 
  

  

 
  

 

  
  

 

is in d(p) showing that u1u3u3u4u3 ↑ u2u3u1 is a nontrivial nonfactorizable compatibility relation over X. 



 
 

9. Conclusion 

In this paper, we have introduced pcodes and have discussed their relation to some partial orderings and to the 

set of primitive partial words. We have shown the decidability of the pcode property. Open problems abound. 

 

We end this paper with an extension of the class of codes called the circular codes to the class of pcodes called 

the circular pcodes. 

 

Let X be a nonempty subset of W0\{ε}. Then X is called a circular code if for all integers m ≥ 1, n ≥ 1, words 

u1,...,um, v1,...,vn ∈ X, and r ∈ W0 and s ∈ W0\{ε}, the conditions 

 

su2...umr = v1v2...vn, 

u1 = rs 

 

imply m = n, r = ε, and ui = vi for i = 1,..., m [2]. 

 

In the case of partial words, we define a circular pcode as follows. 

 

Definition 8. Let X be a nonempty subset of W\{ε}. Then X is called a circular pcode if for all integers m ≥ 1 , n 

≥ 1, partial words u1,...,um, v1,...,vn ∈ X, and r ∈ W and s ∈ W\{ε}, the conditions 

 



su2...umr ↑ v1v2...vn, 

u1 ↑ rs 

 

imply m = n, r = ε, and ui = vi for i = 1,...,m. 

 

It is clear from the definition that a subset X of W0\{ε} is a circular code if and only if it is a circular pcode. A 

circular pcode is a pcode, and any subset of a circular pcode is also a circular pcode. 

 

Two partial words u and v are called conjugate if there exist partial words x and y such that u ⊂ xy and v ⊂ yx 

[9]. 

 

Proposition 21. Let X ⊂ W\{ε}. If X is a circular pcode, then X does not contain two distinct conjugate partial 

words. 

 

Proof. Suppose that there exist two distinct conjugate partial words u and v in X, and let x, y be partial words 

such that u ⊂ xy, v ⊂ yx. If x = ε or y = ε, then u ↑ v, contradicting the fact that X is a pcode. So we may assume 

that x ≠ ε and y ≠ ε. Since X is a circular pcode, the two conditions yux ↑ vv and u ↑ xy imply x = ε, a 

contradiction. ∎ 

 

Proposition 22. Let X ⊂ W\{ε} be a circular pcode. If u ∈ X, then u is primitive. 

 

Proof. Suppose that there exist u ∈ X and a partial word v such that u ⊂ v
n
 with n ≥ 2. It follows that vuv

n−1
 ↑ uu 

and u ↑ v
n−1

v. Since X is a circular pcode, then v
n−1

 = ε. We conclude that v = ε, a contradiction. ∎ 
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